論文の概要: AHSG: Adversarial Attack on High-level Semantics in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2412.07468v2
- Date: Thu, 17 Apr 2025 16:13:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:33:26.709500
- Title: AHSG: Adversarial Attack on High-level Semantics in Graph Neural Networks
- Title(参考訳): AHSG:グラフニューラルネットワークにおける高レベルセマンティックスに対する逆攻撃
- Authors: Kai Yuan, Jiahao Zhang, Yidi Wang, Xiaobing Pei,
- Abstract要約: グラフニューラルネットワークに対する敵攻撃は、グラフトポロジとノード属性を慎重に修正することで学習者のパフォーマンスを乱すことを目的としている。
既存の方法は、修正予算とグラフ特性の違いを制約することで攻撃ステルス性を達成する。
本稿では,グラフ構造攻撃モデルであるグラフニューラルネットワークのための高レベルセマンティックス(AHSG)に対する逆アタックを提案し,プライマリセマンティクスの保持を保証する。
- 参考スコア(独自算出の注目度): 8.512355226572254
- License:
- Abstract: Adversarial attacks on Graph Neural Networks aim to perturb the performance of the learner by carefully modifying the graph topology and node attributes. Existing methods achieve attack stealthiness by constraining the modification budget and differences in graph properties. However, these methods typically disrupt task-relevant primary semantics directly, which results in low defensibility and detectability of the attack. In this paper, we propose an Adversarial Attack on High-level Semantics for Graph Neural Networks (AHSG), which is a graph structure attack model that ensures the retention of primary semantics. By combining latent representations with shared primary semantics, our model retains detectable attributes and relational patterns of the original graph while leveraging more subtle changes to carry out the attack. Then we use the Projected Gradient Descent algorithm to map the latent representations with attack effects to the adversarial graph. Through experiments on robust graph deep learning models equipped with defense strategies, we demonstrate that AHSG outperforms other state-of-the-art methods in attack effectiveness. Additionally, using Contextual Stochastic Block Models to detect the attacked graph further validates that our method preserves the primary semantics of the graph.
- Abstract(参考訳): グラフニューラルネットワークに対する敵攻撃は、グラフトポロジとノード属性を慎重に修正することで学習者のパフォーマンスを乱すことを目的としている。
既存の方法は、修正予算とグラフ特性の違いを制約することで攻撃ステルス性を達成する。
しかし、これらの手法は一般的にタスク関連プライマリセマンティクスを直接妨害するので、攻撃の防御性や検出性が低い。
本稿では,グラフ構造攻撃モデルであるAHSG(Adversarial Attack on High-level Semantics for Graph Neural Networks)を提案する。
潜在表現と共有一次意味論を組み合わせることで、我々のモデルは、より微妙な変化を利用して攻撃を実行しながら、元のグラフの検出可能な属性と関係パターンを保持します。
次に、予測勾配Descentアルゴリズムを用いて、攻撃効果のある潜伏表現を逆数グラフにマッピングする。
防衛戦略を備えた頑健なグラフ深層学習モデルの実験を通じて、AHSGは攻撃効果において他の最先端手法よりも優れていることを示す。
さらに、攻撃されたグラフを検出するためにコンテキスト確率ブロックモデルを用いることで、我々の手法がグラフの一次意味を保存していることがさらに証明される。
関連論文リスト
- Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
グラフニューラルネットワーク(GNN)は敵の攻撃に弱いことが示されている。
本稿では,DGA(Dariable Graph Attack)と呼ばれる新しい攻撃手法を提案し,効果的な攻撃を効率的に生成する。
最先端と比較して、DGAは6倍のトレーニング時間と11倍のGPUメモリフットプリントでほぼ同等の攻撃性能を達成する。
論文 参考訳(メタデータ) (2023-08-29T20:14:42Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
我々は,グラフ構造の摂動によるグラフ分類のためのGNNに対する敵対的攻撃について,系統的研究を行った。
我々は、高い攻撃成功率を維持しながら、グラフ内で摂動するエッジの数を最小化する最適化問題として、我々の攻撃を定式化する。
実世界の3つのデータセットに対する実験結果から,クエリや摂動を少なくして,グラフ分類のための代表的GNNを効果的に攻撃できることが示された。
論文 参考訳(メタデータ) (2021-08-21T14:01:34Z) - GraphAttacker: A General Multi-Task GraphAttack Framework [4.218118583619758]
グラフニューラルネットワーク(GNN)は多くの実世界のアプリケーションでグラフ解析タスクにうまく活用されている。
攻撃者が生成した敵のサンプルは ほとんど知覚不能な摂動で 優れた攻撃性能を達成しました
本稿では,グラフ解析タスクに応じて構造と攻撃戦略を柔軟に調整可能な,新しい汎用グラフ攻撃フレームワークであるgraphattackerを提案する。
論文 参考訳(メタデータ) (2021-01-18T03:06:41Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
近年の研究では、グラフニューラルネットワーク(GNN)は堅牢性の欠如により摂動に弱いことが示されている。
現在、GNN攻撃に関するほとんどの研究は、主に攻撃を誘導し、優れたパフォーマンスを達成するために勾配情報を使用している。
主な理由は、攻撃にグラフ全体を使わなければならないため、データスケールが大きくなるにつれて、時間と空間の複雑さが増大するからです。
本稿では,グラフデータに対する敵攻撃の影響を測定するために,DAC(Degree Assortativity Change)という実用的な指標を提案する。
論文 参考訳(メタデータ) (2020-09-08T02:17:55Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Adversarial Attack on Hierarchical Graph Pooling Neural Networks [14.72310134429243]
グラフ分類タスクにおけるグラフニューラルネットワーク(GNN)の堅牢性について検討する。
本稿では,グラフ分類タスクに対する逆攻撃フレームワークを提案する。
我々の知る限りでは、これは階層的なGNNベースのグラフ分類モデルに対する敵攻撃に関する最初の研究である。
論文 参考訳(メタデータ) (2020-05-23T16:19:47Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力なツールである。
近年の研究では、GNNは敵攻撃と呼ばれる、慎重に構築された摂動に弱いことが示されている。
本稿では,構造グラフと頑健なグラフニューラルネットワークモデルを共同で学習できる汎用フレームワークであるPro-GNNを提案する。
論文 参考訳(メタデータ) (2020-05-20T17:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。