論文の概要: Secrets of 3D Implicit Object Shape Reconstruction in the Wild
- arxiv url: http://arxiv.org/abs/2101.06860v1
- Date: Mon, 18 Jan 2021 03:24:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 05:57:23.318176
- Title: Secrets of 3D Implicit Object Shape Reconstruction in the Wild
- Title(参考訳): 野生における3次元物体形状復元の秘密
- Authors: Shivam Duggal, Zihao Wang, Wei-Chiu Ma, Sivabalan Manivasagam, Justin
Liang, Shenlong Wang and Raquel Urtasun
- Abstract要約: コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
- 参考スコア(独自算出の注目度): 92.5554695397653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing high-fidelity 3D objects from sparse, partial observation is
of crucial importance for various applications in computer vision, robotics,
and graphics. While recent neural implicit modeling methods show promising
results on synthetic or dense datasets, they perform poorly on real-world data
that is sparse and noisy. This paper analyzes the root cause of such deficient
performance of a popular neural implicit model. We discover that the
limitations are due to highly complicated objectives, lack of regularization,
and poor initialization. To overcome these issues, we introduce two simple yet
effective modifications: (i) a deep encoder that provides a better and more
stable initialization for latent code optimization; and (ii) a deep
discriminator that serves as a prior model to boost the fidelity of the shape.
We evaluate our approach on two real-wold self-driving datasets and show
superior performance over state-of-the-art 3D object reconstruction methods.
- Abstract(参考訳): 高忠実度3Dオブジェクトをスパースから再構成し、部分的な観察はコンピュータビジョン、ロボティクス、グラフィックスの様々な応用において重要である。
最近のニューラル暗黙的モデリング手法は、合成されたデータセットや高密度なデータセットに対して有望な結果を示すが、それらはスパースでノイズの多い実世界のデータでは不十分である。
本稿では,ニューラルネットワークを用いたニューラル暗黙モデルの性能低下の根本原因を解析する。
この制限は、非常に複雑な目的、正規化の欠如、そして初期化の欠如によるものである。
これらの問題を克服するために、 (i) 潜時コード最適化のためのより良い、より安定した初期化を提供するディープエンコーダ、 (ii) 形状の忠実度を高めるための事前モデルとして機能するディープディミネータの2つの簡単な修正を導入する。
提案手法は実車2台について評価し,最先端の3dオブジェクト復元法よりも優れた性能を示す。
関連論文リスト
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Object-Centric Domain Randomization for 3D Shape Reconstruction in the Wild [22.82439286651921]
ワンビュー3次元形状復元における最大の課題の1つは、現実世界の環境から得られる3次元形状2次元画像データの不足である。
ドメインランダム化による顕著な成果にインスパイアされたObjectDRは、オブジェクトの外観や背景の視覚的変化をランダムにシミュレーションすることで、そのようなペア化されたデータを合成する。
論文 参考訳(メタデータ) (2024-03-21T16:40:10Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
クラス増分学習(class-incremental learning)は、モデルが限られたデータに基づいて漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
冗長特徴除去器(RFE)と空間ノイズ補償器(SNC)の2つの新しいコンポーネントを紹介する。
既存の3次元データセットの不均衡を考慮し、3次元FSCILモデルのより微妙な評価を提供する新しい評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - Uncertainty-aware 3D Object-Level Mapping with Deep Shape Priors [15.34487368683311]
未知のオブジェクトに対して高品質なオブジェクトレベルマップを再構築するフレームワークを提案する。
提案手法では,複数のRGB-D画像を入力として,高密度な3次元形状と検出対象に対する9-DoFポーズを出力する。
2つの新たな損失関数を通して形状を伝播し不確実性を生じさせる確率的定式化を導出する。
論文 参考訳(メタデータ) (2023-09-17T00:48:19Z) - Multi-view 3D Object Reconstruction and Uncertainty Modelling with
Neural Shape Prior [9.716201630968433]
セマンティックシーン理解には3次元オブジェクト再構成が重要である。
奥行き情報,閉塞音,ノイズの欠如により,単眼画像から詳細な3次元形状を復元することは困難である。
本研究では,3次元オブジェクトモデルの大規模データセットから物体形状分布を学習し,潜在空間にマッピングするニューラルオブジェクト表現を活用することで,この問題に対処する。
本稿では,その表現の一部として不確実性をモデル化し,個々の入力画像から直接不確実性コードを生成する不確実性認識エンコーダを定義する手法を提案する。
論文 参考訳(メタデータ) (2023-06-17T03:25:13Z) - Autoregressive Uncertainty Modeling for 3D Bounding Box Prediction [63.3021778885906]
3Dバウンディングボックスは、多くのコンピュータビジョンアプリケーションで広く使われている中間表現である。
本稿では,自己回帰モデルを利用して高い信頼度予測と意味のある不確実性対策を行う手法を提案する。
我々はシミュレーションデータセットであるCOB-3Dをリリースし、現実世界のロボティクスアプリケーションで発生する新しいタイプのあいまいさを強調します。
論文 参考訳(メタデータ) (2022-10-13T23:57:40Z) - RandomRooms: Unsupervised Pre-training from Synthetic Shapes and
Randomized Layouts for 3D Object Detection [138.2892824662943]
有望な解決策は、CADオブジェクトモデルで構成される合成データセットをよりよく利用して、実際のデータセットでの学習を促進することである。
最近の3次元事前学習の研究は、合成物体から他の実世界の応用へ学習した伝達特性が失敗することを示している。
本研究では,この目的を達成するためにRandomRoomsという新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:56:12Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。