論文の概要: LNSMM: Eye Gaze Estimation With Local Network Share Multiview Multitask
- arxiv url: http://arxiv.org/abs/2101.07116v1
- Date: Mon, 18 Jan 2021 15:14:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 06:07:14.563106
- Title: LNSMM: Eye Gaze Estimation With Local Network Share Multiview Multitask
- Title(参考訳): LNSMM:ローカルネットワーク共有マルチビューマルチタスクによる眼球運動推定
- Authors: Yong Huang, Ben Chen, Daiming Qu
- Abstract要約: 本稿では,視線点と視線方向を同時に推定する新しい手法を提案する。
本手法は,視線点と視線方向の2つの指標について,現在主流の手法であることを示す。
- 参考スコア(独自算出の注目度): 7.065909514483728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eye gaze estimation has become increasingly significant in computer vision.In
this paper,we systematically study the mainstream of eye gaze estimation
methods,propose a novel methodology to estimate eye gaze points and eye gaze
directions simultaneously.First,we construct a local sharing network for
feature extraction of gaze points and gaze directions estimation,which can
reduce network computational parameters and converge quickly;Second,we propose
a Multiview Multitask Learning (MTL) framework,for gaze directions,a coplanar
constraint is proposed for the left and right eyes,for gaze points,three views
data input indirectly introduces eye position information,a cross-view pooling
module is designed, propose joint loss which handle both gaze points and gaze
directions estimation.Eventually,we collect a dataset to use of gaze
points,which have three views to exist public dataset.The experiment show our
method is state-of-the-art the current mainstream methods on two indicators of
gaze points and gaze directions.
- Abstract(参考訳): Eye gaze estimation has become increasingly significant in computer vision.In this paper,we systematically study the mainstream of eye gaze estimation methods,propose a novel methodology to estimate eye gaze points and eye gaze directions simultaneously.First,we construct a local sharing network for feature extraction of gaze points and gaze directions estimation,which can reduce network computational parameters and converge quickly;Second,we propose a Multiview Multitask Learning (MTL) framework,for gaze directions,a coplanar constraint is proposed for the left and right eyes,for gaze points,three views data input indirectly introduces eye position information,a cross-view pooling module is designed, propose joint loss which handle both gaze points and gaze directions estimation.Eventually,we collect a dataset to use of gaze points,which have three views to exist public dataset.The experiment show our method is state-of-the-art the current mainstream methods on two indicators of gaze points and gaze directions.
関連論文リスト
- GazeOnce: Real-Time Multi-Person Gaze Estimation [18.16091280655655]
外観に基づく視線推定は、単一の画像から3次元視線方向を予測することを目的としている。
近年の深層学習に基づくアプローチは優れた性能を示すが,複数対人視線をリアルタイムに出力することはできない。
画像中の複数の顔に対する視線方向を同時に予測できるGazeOnceを提案する。
論文 参考訳(メタデータ) (2022-04-20T14:21:47Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
ニューラルネットワークの高次元景観特性を探索する方法を示す。
我々は、小さなニューラルネットワークの観測結果をより複雑なシステムに一般化する。
インタラクティブダッシュボードは、いくつかのアプリケーションネットワークを開放する。
論文 参考訳(メタデータ) (2022-04-09T16:41:53Z) - Gaze Estimation with Eye Region Segmentation and Self-Supervised
Multistream Learning [8.422257363944295]
本稿では、視線推定のための頑健な視線表現を学習する新しいマルチストリームネットワークを提案する。
まず,目に見える眼球と虹彩をシミュレーターを用いて詳述した眼球領域マスクを含む合成データセットを作成する。
次に、U-Net型モデルを用いて視線領域分割を行い、実際の画像の視線領域マスクを生成する。
論文 参考訳(メタデータ) (2021-12-15T04:44:45Z) - PANet: Perspective-Aware Network with Dynamic Receptive Fields and
Self-Distilling Supervision for Crowd Counting [63.84828478688975]
本稿では,視点問題に対処するため,PANetと呼ばれる新しい視点認識手法を提案する。
対象物のサイズが視点効果によって1つの画像で大きく変化するという観測に基づいて,動的受容場(DRF)フレームワークを提案する。
このフレームワークは、入力画像に応じて拡張畳み込みパラメータによって受容野を調整することができ、モデルが各局所領域についてより識別的な特徴を抽出するのに役立つ。
論文 参考訳(メタデータ) (2021-10-31T04:43:05Z) - Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds
of Large Scenes with Learned Virtual View Visibility [17.929307870456416]
非構造点雲からのメッシュ再構築のための新しいフレームワークを提案する。
仮想ビューと従来のグラフカットベースのメッシュ生成において、学習した3Dポイントの可視性を活用します。
論文 参考訳(メタデータ) (2021-08-18T20:28:16Z) - Bayesian Eye Tracking [63.21413628808946]
モデルに基づく視線追跡は、目の特徴検出エラーの影響を受けやすい。
モデルベースアイトラッキングのためのベイズフレームワークを提案する。
提案手法は,最先端のモデルベースおよび学習ベースの手法と比較して,一般化能力の大幅な向上を示す。
論文 参考訳(メタデータ) (2021-06-25T02:08:03Z) - Weakly-Supervised Physically Unconstrained Gaze Estimation [80.66438763587904]
我々は、人間のインタラクションのビデオから弱教師付き視線推定を行うという未発見の問題に対処する。
本稿では,タスクに特化して設計された新しい損失関数とともに,トレーニングアルゴリズムを提案する。
a)半教師付き視線推定の精度と(b)最先端の物理的に制約のないGaze360視線推定ベンチマーク上でのクロスドメイン一般化の精度を大幅に改善した。
論文 参考訳(メタデータ) (2021-05-20T14:58:52Z) - Appearance-based Gaze Estimation With Deep Learning: A Review and
Benchmark [10.745148379100796]
本稿では,深層学習による外観に基づく視線推定手法の総合的検討について述べる。
様々な視線推定手法の性能を正確に比較するため,全公用視線推定データセットを特徴付ける。
本論文は,深層学習に基づく視線推定手法開発への参考となるだけでなく,将来の視線推定研究の指針となる。
論文 参考訳(メタデータ) (2021-04-26T15:53:03Z) - Adaptive Feature Fusion Network for Gaze Tracking in Mobile Tablets [19.739595664816164]
本稿では,モバイルタブレットで視線追跡を行う適応型機能融合ネットワーク(aff-net)を提案する。
Squeeze-and-Excitation 層を用いて外観の類似性に応じて2眼特徴を適応的に融合する。
GazeCaptureとMPIIFaceGazeのデータセットによる実験により,提案手法の性能は一貫して向上した。
論文 参考訳(メタデータ) (2021-03-20T07:16:10Z) - P2-Net: Joint Description and Detection of Local Features for Pixel and
Point Matching [78.18641868402901]
この研究は、2D画像と3D点雲の微粒な対応を確立するための取り組みである。
画素領域と点領域の固有情報変動を緩和するために,新しい損失関数と組み合わせた超広帯域受信機構を設計した。
論文 参考訳(メタデータ) (2021-03-01T14:59:40Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。