Deep-Learning Driven Noise Reduction for Reduced Flux Computed
Tomography
- URL: http://arxiv.org/abs/2101.07376v1
- Date: Mon, 18 Jan 2021 23:31:37 GMT
- Title: Deep-Learning Driven Noise Reduction for Reduced Flux Computed
Tomography
- Authors: Khalid L. Alsamadony, Ertugrul U. Yildirim, Guenther Glatz, Umair bin
Waheed, Sherif M. Hanafy
- Abstract summary: Deep convolutional neural networks (DCNNs) can be used to map low-quality, low-dose images to higher-dose, higher-quality images.
We highlight current results based on micro-CT derived datasets and apply transfer learning to improve DCNN results without increasing training time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have received considerable attention in clinical
imaging, particularly with respect to the reduction of radiation risk. Lowering
the radiation dose by reducing the photon flux inevitably results in the
degradation of the scanned image quality. Thus, researchers have sought to
exploit deep convolutional neural networks (DCNNs) to map low-quality, low-dose
images to higher-dose, higher-quality images thereby minimizing the associated
radiation hazard. Conversely, computed tomography (CT) measurements of
geomaterials are not limited by the radiation dose. In contrast to the human
body, however, geomaterials may be comprised of high-density constituents
causing increased attenuation of the X-Rays. Consequently, higher dosage images
are required to obtain an acceptable scan quality. The problem of prolonged
acquisition times is particularly severe for micro-CT based scanning
technologies. Depending on the sample size and exposure time settings, a single
scan may require several hours to complete. This is of particular concern if
phenomena with an exponential temperature dependency are to be elucidated. A
process may happen too fast to be adequately captured by CT scanning. To
address the aforementioned issues, we apply DCNNs to improve the quality of
rock CT images and reduce exposure times by more than 60\%, simultaneously. We
highlight current results based on micro-CT derived datasets and apply transfer
learning to improve DCNN results without increasing training time. The approach
is applicable to any computed tomography technology. Furthermore, we contrast
the performance of the DCNN trained by minimizing different loss functions such
as mean squared error and structural similarity index.
Related papers
- Cycle-Constrained Adversarial Denoising Convolutional Network for PET Image Denoising: Multi-Dimensional Validation on Large Datasets with Reader Study and Real Low-Dose Data [9.160782425067712]
We propose a Cycle-versa Adrial Denoising Convolutional Network (Cycle-DCN) to reconstruct full-dose-quality images from low-dose scans.
Experiments were conducted on a large dataset consisting of raw PET brain data from 1,224 patients.
Cycle-DCN significantly improves average Peak Signal-to-Noise Ratio (PSNR), SSIM, and Normalized Root Mean Square Error (NRMSE) across three dose levels.
arXiv Detail & Related papers (2024-10-31T04:34:28Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Low-Dose CT Image Enhancement Using Deep Learning [0.0]
It is preferable to use as low a dose of ionizing radiation as possible, particularly in computed tomography (CT) imaging systems.
A popular method for radiation dose reduction in CT imaging is known as the quarter-dose technique.
Recent and popular deep-learning approaches provide an intriguing possibility of image enhancement for low-dose artifacts.
arXiv Detail & Related papers (2023-10-31T08:34:33Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Probabilistic self-learning framework for Low-dose CT Denoising [1.8734449181723827]
Decreasing the exposure can reduce the dose and hence the radiation-related risk.
Supervised deep learning can be used to train a neural network to denoise the low-dose CT (LDCT)
arXiv Detail & Related papers (2020-05-30T17:47:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.