End-to-End Deep Learning for Interior Tomography with Low-Dose X-ray CT
- URL: http://arxiv.org/abs/2501.05085v1
- Date: Thu, 09 Jan 2025 09:10:17 GMT
- Title: End-to-End Deep Learning for Interior Tomography with Low-Dose X-ray CT
- Authors: Yoseob Han, Dufan Wu, Kyungsang Kim, Quanzheng Li,
- Abstract summary: We find that the image-domain convolutional neural network (CNN) is difficult to solve coupled artifacts, based on deep convolutional framelets.
We propose a novel proposed end-to-end learning using dual-domain CNNs.
- Score: 9.011662927141378
- License:
- Abstract: Objective: There exist several X-ray computed tomography (CT) scanning strategies to reduce a radiation dose, such as (1) sparse-view CT, (2) low-dose CT, and (3) region-of-interest (ROI) CT (called interior tomography). To further reduce the dose, the sparse-view and/or low-dose CT settings can be applied together with interior tomography. Interior tomography has various advantages in terms of reducing the number of detectors and decreasing the X-ray radiation dose. However, a large patient or small field-of-view (FOV) detector can cause truncated projections, and then the reconstructed images suffer from severe cupping artifacts. In addition, although the low-dose CT can reduce the radiation exposure dose, analytic reconstruction algorithms produce image noise. Recently, many researchers have utilized image-domain deep learning (DL) approaches to remove each artifact and demonstrated impressive performances, and the theory of deep convolutional framelets supports the reason for the performance improvement. Approach: In this paper, we found that the image-domain convolutional neural network (CNN) is difficult to solve coupled artifacts, based on deep convolutional framelets. Significance: To address the coupled problem, we decouple it into two sub-problems: (i) image domain noise reduction inside truncated projection to solve low-dose CT problem and (ii) extrapolation of projection outside truncated projection to solve the ROI CT problem. The decoupled sub-problems are solved directly with a novel proposed end-to-end learning using dual-domain CNNs. Main results: We demonstrate that the proposed method outperforms the conventional image-domain deep learning methods, and a projection-domain CNN shows better performance than the image-domain CNNs which are commonly used by many researchers.
Related papers
- CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Dual-Domain Coarse-to-Fine Progressive Estimation Network for
Simultaneous Denoising, Limited-View Reconstruction, and Attenuation
Correction of Cardiac SPECT [16.75701769113328]
Single-Photon Emission Computed Tomography (SPECT) is widely applied for the diagnosis of coronary artery diseases.
Low-dose (LD) SPECT aims to minimize radiation exposure but leads to increased image noise. Limited-view (LV) SPECT, such as the latest GE MyoSPECT ES system, enables accelerated scanning and reduces hardware expenses but degrades reconstruction accuracy.
arXiv Detail & Related papers (2024-01-23T23:28:15Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Low-Dose CT Image Enhancement Using Deep Learning [0.0]
It is preferable to use as low a dose of ionizing radiation as possible, particularly in computed tomography (CT) imaging systems.
A popular method for radiation dose reduction in CT imaging is known as the quarter-dose technique.
Recent and popular deep-learning approaches provide an intriguing possibility of image enhancement for low-dose artifacts.
arXiv Detail & Related papers (2023-10-31T08:34:33Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Cross-domain Denoising for Low-dose Multi-frame Spiral Computed Tomography [20.463308418655526]
X-ray exposure raises concerns about potential health risks such as cancer.
The desire for lower radiation doses has driven researchers to improve reconstruction quality.
This paper proposes a two-stage method for the commercially available multi-slice spiral CT scanners.
arXiv Detail & Related papers (2023-04-21T09:30:22Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
We propose SNAF for sparse-view CBCT reconstruction by learning the neural attenuation fields.
Our approach achieves superior performance in terms of high reconstruction quality (30+ PSNR) with only 20 input views.
arXiv Detail & Related papers (2022-11-30T14:51:14Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Deep-Learning Driven Noise Reduction for Reduced Flux Computed
Tomography [0.0]
Deep convolutional neural networks (DCNNs) can be used to map low-quality, low-dose images to higher-dose, higher-quality images.
We highlight current results based on micro-CT derived datasets and apply transfer learning to improve DCNN results without increasing training time.
arXiv Detail & Related papers (2021-01-18T23:31:37Z) - Cascaded Convolutional Neural Networks with Perceptual Loss for Low Dose
CT Denoising [0.0]
Low Dose CT Denoising research aims to reduce the risks of radiation exposure to patients.
Recent approaches that use mean-squared-error (MSE) tend to over smooth the image resulting in loss of fine structural details in low contrast regions of the image.
We show that our method outperforms related works and more effectively reconstructs fine structural details in low contrast regions of the image.
arXiv Detail & Related papers (2020-06-26T00:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.