A DCNN-based Arbitrarily-Oriented Object Detector for Quality Control
and Inspection Application
- URL: http://arxiv.org/abs/2101.07383v1
- Date: Tue, 19 Jan 2021 00:23:27 GMT
- Title: A DCNN-based Arbitrarily-Oriented Object Detector for Quality Control
and Inspection Application
- Authors: Kai Yao, Alberto Ortiz, Francisco Bonnin-Pascual
- Abstract summary: A lightweight neural network is exploited to achieve oriented detection results using a regression method.
The first stage of the proposed method is capable of detecting the small targets considered in the two scenarios.
In the second stage, despite the simplicity, it is efficient to detect elongated targets while maintaining high running efficiency.
- Score: 10.076629346147639
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Following the success of machine vision systems for on-line automated quality
control and inspection processes, an object recognition solution is presented
in this work for two different specific applications, i.e., the detection of
quality control items in surgery toolboxes prepared for sterilizing in a
hospital, as well as the detection of defects in vessel hulls to prevent
potential structural failures. The solution has two stages. First, a feature
pyramid architecture based on Single Shot MultiBox Detector (SSD) is used to
improve the detection performance, and a statistical analysis based on ground
truth is employed to select parameters of a range of default boxes. Second, a
lightweight neural network is exploited to achieve oriented detection results
using a regression method. The first stage of the proposed method is capable of
detecting the small targets considered in the two scenarios. In the second
stage, despite the simplicity, it is efficient to detect elongated targets
while maintaining high running efficiency.
Related papers
- Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7 one-stage detector is subjected to a novel meta-learning training framework.
This transformation allows the detector to adeptly address FSOD tasks while capitalizing on its inherent advantage of lightweight.
To validate the effectiveness of our proposed detector, we conducted performance comparisons with current state-of-the-art detectors.
arXiv Detail & Related papers (2024-04-29T04:56:52Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
We introduce a novel introspection solution for 2D object detection based on Deep Neural Networks (DNNs)
We implement several state-of-the-art (SOTA) introspection mechanisms for error detection in 2D object detection, using one-stage and two-stage object detectors evaluated on KITTI and BDD datasets.
Our performance evaluation shows that the proposed introspection solution outperforms SOTA methods, achieving an absolute reduction in the missed error ratio of 9% to 17% in the BDD dataset.
arXiv Detail & Related papers (2024-03-02T10:56:14Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Identifying Out-of-Distribution Samples in Real-Time for Safety-Critical
2D Object Detection with Margin Entropy Loss [0.0]
We present an approach to enable OOD detection for 2D object detection by employing the margin entropy (ME) loss.
A CNN trained with the ME loss significantly outperforms OOD detection using standard confidence scores.
arXiv Detail & Related papers (2022-09-01T11:14:57Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Unsupervised Out-of-Domain Detection via Pre-trained Transformers [56.689635664358256]
Out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues.
Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data.
Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy.
arXiv Detail & Related papers (2021-06-02T05:21:25Z) - Automatic Visual Inspection of Rare Defects: A Framework based on
GP-WGAN and Enhanced Faster R-CNN [0.0]
This paper proposes a two-staged fault diagnosis framework for Automatic Visual Inspection (AVI) systems.
In the first stage, a generation model is designed to synthesize new samples based on real samples.
The proposed augmentation algorithm extracts objects from the real samples and blends them randomly, to generate new samples and enhance the performance of the image processor.
arXiv Detail & Related papers (2021-05-02T11:34:59Z) - System-reliability based multi-ensemble of GAN and one-class joint
Gaussian distributions for unsupervised real-time structural health
monitoring [0.0]
This study introduces an unsupervised real-time SHM method with a mixture of low- and high-dimensional features without a case-dependent extraction scheme.
A novelty detection system of limit-state functions based on GAN and 1-CG models' detection scores is constructed.
The tuning makes the method robust to user-defined parameters, which is crucial as there is no rule for selecting those parameters in a real-time SHM.
arXiv Detail & Related papers (2021-02-01T20:50:55Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.