COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning
- URL: http://arxiv.org/abs/2101.07433v2
- Date: Tue, 26 Jan 2021 13:51:26 GMT
- Title: COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning
- Authors: Hayden Gunraj, Ali Sabri, David Koff, and Alexander Wong
- Abstract summary: We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
- Score: 70.92379567261304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic continues to rage on, with multiple waves causing
substantial harm to health and economies around the world. Motivated by the use
of CT imaging at clinical institutes around the world as an effective
complementary screening method to RT-PCR testing, we introduced COVID-Net CT, a
neural network tailored for detection of COVID-19 cases from chest CT images as
part of the open source COVID-Net initiative. However, one potential limiting
factor is restricted quantity and diversity given the single nation patient
cohort used. In this study, we introduce COVID-Net CT-2, enhanced deep neural
networks for COVID-19 detection from chest CT images trained on the largest
quantity and diversity of multinational patient cases in research literature.
We introduce two new CT benchmark datasets, the largest comprising a
multinational cohort of 4,501 patients from at least 15 countries. We leverage
explainability to investigate the decision-making behaviour of COVID-Net CT-2,
with the results for select cases reviewed and reported on by two
board-certified radiologists with over 10 and 30 years of experience,
respectively. The COVID-Net CT-2 neural networks achieved accuracy, COVID-19
sensitivity, PPV, specificity, and NPV of 98.1%/96.2%/96.7%/99%/98.8% and
97.9%/95.7%/96.4%/98.9%/98.7%, respectively. Explainability-driven performance
validation shows that COVID-Net CT-2's decision-making behaviour is consistent
with radiologist interpretation by leveraging correct, clinically relevant
critical factors. The results are promising and suggest the strong potential of
deep neural networks as an effective tool for computer-aided COVID-19
assessment. While not a production-ready solution, we hope the open-source,
open-access release of COVID-Net CT-2 and benchmark datasets will continue to
enable researchers, clinicians, and citizen data scientists alike to build upon
them.
Related papers
- COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
We introduce COVIDx CT-3, a large-scale benchmark dataset for detection of COVID-19 cases from chest CT images.
COVIDx CT-3 includes 431,205 CT slices from 6,068 patients across at least 17 countries.
We examine the data diversity and potential biases of the COVIDx CT-3 dataset, finding significant geographic and class imbalances.
arXiv Detail & Related papers (2022-06-07T06:35:48Z) - COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans [29.266579630983358]
During pandemic era, visual assessment and quantification of COVID-19 lung lesions by expert radiologists become expensive and prone to error.
This paper introduces an open access COVID-19 CT segmentation dataset containing 433 CT images from 82 patients that have been annotated by an expert radiologist.
A Deep Neural Network (DNN)-based framework is proposed, referred to as the COVID-Rate, that autonomously segments lung abnormalities associated with COVID-19 from chest CT scans.
arXiv Detail & Related papers (2021-07-04T03:19:43Z) - COVID-Net CXR-2: An Enhanced Deep Convolutional Neural Network Design
for Detection of COVID-19 Cases from Chest X-ray Images [58.35627258364233]
Use of chest X-ray (CXR) imaging as a complimentary screening strategy to RT-PCR testing continues to grow.
We introduce COVID-Net CXR-2, an enhanced deep convolutional neural network design for COVID-19 detection from CXR images.
benchmark dataset composed of 19,203 CXR images from a multinational cohort of 16,656 patients from at least 51 countries.
arXiv Detail & Related papers (2021-05-14T04:29:21Z) - COVID-Net CXR-S: Deep Convolutional Neural Network for Severity
Assessment of COVID-19 Cases from Chest X-ray Images [74.77272804752306]
We introduce COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-CoV-2 positive patient based on a CXR image of the patient's chest.
We leveraged transfer learning to transfer representational knowledge gained from over 16,000 CXR images from a multinational cohort of over 15,000 patient cases into a custom network architecture for severity assessment.
The proposed COVID-Net CXR-S has potential to be a powerful tool for computer-aided severity assessment of CXR images of COVID-19 positive patients.
arXiv Detail & Related papers (2021-05-01T14:15:12Z) - COVID-FACT: A Fully-Automated Capsule Network-based Framework for
Identification of COVID-19 Cases from Chest CT scans [29.327290778950324]
We propose a two-stage fully-automated framework for identification of COVID-19 positive cases referred to as the "COVID-FACT"
COVID-FACT detects slices with infection, and identifies positive COVID-19 cases using an in-house CT scan dataset.
Based on our experiments, COVID-FACT achieves an accuracy of 90.82%, a sensitivity of 94.55%, a specificity of 86.04%, and an Area Under the Curve (AUC) of 0.98, while depending on far less supervision and annotation.
arXiv Detail & Related papers (2020-10-30T03:30:22Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - COVID_MTNet: COVID-19 Detection with Multi-Task Deep Learning Approaches [5.578413517654704]
We propose a fast and efficient way to identify COVID-19 patients with multi-task deep learning (DL) methods.
X-ray and CT scan images are considered to evaluate the proposed technique.
The detection model shows around 84.67% testing accuracy from X-ray images and 98.78% accuracy in CT-images.
arXiv Detail & Related papers (2020-04-07T23:19:59Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.