Learning Control of Quantum Systems
- URL: http://arxiv.org/abs/2101.07461v1
- Date: Tue, 19 Jan 2021 04:35:36 GMT
- Title: Learning Control of Quantum Systems
- Authors: Daoyi Dong
- Abstract summary: This paper provides a brief introduction to learning control of quantum systems.
In particular, the following aspects are outlined, including gradient-based learning for optimal control of quantum systems.
- Score: 2.5712062559655013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides a brief introduction to learning control of quantum
systems. In particular, the following aspects are outlined, including
gradient-based learning for optimal control of quantum systems, evolutionary
computation for learning control of quantum systems, learning-based quantum
robust control, and reinforcement learning for quantum control.
Related papers
- Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Model-free Quantum Gate Design and Calibration using Deep Reinforcement
Learning [7.683965448804695]
We propose a novel training framework using deep reinforcement learning for model-free quantum control.
The proposed framework relies only on the measurement at the end of the control process and offers the ability to find the optimal control policy.
arXiv Detail & Related papers (2023-02-05T12:36:03Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Quantum estimation, control and learning: opportunities and challenges [4.622079557860986]
This article presents a brief introduction to challenging problems and potential opportunities in the emerging areas of quantum estimation, control and learning.
The topics cover quantum state estimation, quantum parameter identification, quantum open-loop control, quantum feedback control, machine learning for estimation and control of quantum systems, and quantum machine learning.
arXiv Detail & Related papers (2022-01-15T12:07:10Z) - A Tutorial on Optimal Control and Reinforcement Learning methods for
Quantum Technologies [0.0]
This tutorial introduces the methods of Quantum Optimal Control and Reinforcement Learning by applying them to the problem of three-level population transfer.
The jupyter notebooks to reproduce some of our results are open-sourced and available on GitHub.
arXiv Detail & Related papers (2021-12-14T15:11:10Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Information flow and error scaling for fully-quantum control [4.724825031148412]
We show that the quantum channel capacity sets the scaling behaviour of the optimal control error.
We prove that the minimum control error is ensured by maximizing the quantum capacity of the channel.
arXiv Detail & Related papers (2020-12-11T10:46:25Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum optimal control of multi-level dissipative quantum systems with
Reinforcement Learning [0.06372261626436676]
We propose a multi-level dissipative quantum control framework and show that deep reinforcement learning provides an efficient way to identify the optimal strategies.
This framework can be generalized to be applied to other quantum control models.
arXiv Detail & Related papers (2020-07-02T02:11:06Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.