Quantum Geometric Machine Learning for Quantum Circuits and Control
- URL: http://arxiv.org/abs/2006.11332v2
- Date: Tue, 7 Jul 2020 13:13:48 GMT
- Title: Quantum Geometric Machine Learning for Quantum Circuits and Control
- Authors: Elija Perrier, Christopher Ferrie, Dacheng Tao
- Abstract summary: We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
- Score: 78.50747042819503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of machine learning techniques to solve problems in quantum
control together with established geometric methods for solving optimisation
problems leads naturally to an exploration of how machine learning approaches
can be used to enhance geometric approaches to solving problems in quantum
information processing. In this work, we review and extend the application of
deep learning to quantum geometric control problems. Specifically, we
demonstrate enhancements in time-optimal control in the context of quantum
circuit synthesis problems by applying novel deep learning algorithms in order
to approximate geodesics (and thus minimal circuits) along Lie group manifolds
relevant to low-dimensional multi-qubit systems, such as SU(2), SU(4) and
SU(8). We demonstrate the superior performance of greybox models, which combine
traditional blackbox algorithms with prior domain knowledge of quantum
mechanics, as means of learning underlying quantum circuit distributions of
interest. Our results demonstrate how geometric control techniques can be used
to both (a) verify the extent to which geometrically synthesised quantum
circuits lie along geodesic, and thus time-optimal, routes and (b) synthesise
those circuits. Our results are of interest to researchers in quantum control
and quantum information theory seeking to combine machine learning and
geometric techniques for time-optimal control problems.
Related papers
- From Easy to Hard: Tackling Quantum Problems with Learned Gadgets For Real Hardware [0.0]
Reinforcement learning has proven to be a powerful approach, but many limitations remain due to the exponential scaling of the space of possible operations on qubits.
We develop an algorithm that automatically learns composite gates ("$gadgets$") and adds them as additional actions to the reinforcement learning agent to facilitate the search.
We show that with GRL we can find very compact PQCs that improve the error in estimating the ground state of TFIM by up to $107$ fold.
arXiv Detail & Related papers (2024-10-31T22:02:32Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Enhancing variational quantum state diagonalization using reinforcement
learning techniques [1.583327010995414]
We tackle the problem of designing a very shallow quantum circuit, required in the quantum state diagonalization task.
We use a novel encoding method for the RL-state, a dense reward function, and an $epsilon$-greedy policy to achieve this.
We demonstrate that the circuits proposed by the reinforcement learning methods are shallower than the standard variational quantum state diagonalization algorithm.
arXiv Detail & Related papers (2023-06-19T17:59:04Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
Two promising areas of quantum algorithms are quantum machine learning and quantum optimization.
Motivated by recent progress in quantum technologies and in particular quantum software, research and industrial communities have been trying to discover new applications of quantum algorithms.
arXiv Detail & Related papers (2021-12-22T06:19:36Z) - Quantum Phase Recognition via Quantum Kernel Methods [6.3286116342955845]
We explore the power of quantum learning algorithms in solving an important class of Quantum Phase Recognition problems.
We numerically benchmark our algorithm for a variety of problems, including recognizing symmetry-protected topological phases and symmetry-broken phases.
Our results highlight the capability of quantum machine learning in predicting such quantum phase transitions in many-particle systems.
arXiv Detail & Related papers (2021-11-15T06:17:52Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Reinforcement Learning with Quantum Variational Circuits [0.0]
This work explores the potential for quantum computing to facilitate reinforcement learning problems.
Specifically, we investigate the use of quantum variational circuits, a form of quantum machine learning.
Results indicate both hybrid and pure quantum variational circuit have the ability to solve reinforcement learning tasks with a smaller parameter space.
arXiv Detail & Related papers (2020-08-15T00:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.