論文の概要: Spatial Assembly: Generative Architecture With Reinforcement Learning,
Self Play and Tree Search
- arxiv url: http://arxiv.org/abs/2101.07579v1
- Date: Tue, 19 Jan 2021 11:57:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 04:05:51.569143
- Title: Spatial Assembly: Generative Architecture With Reinforcement Learning,
Self Play and Tree Search
- Title(参考訳): 空間アセンブリ:強化学習,自己遊び,木探索を用いた生成的アーキテクチャ
- Authors: Panagiotis Tigas and Tyson Hosmer
- Abstract要約: 空間集合体生成における強化学習の活用について検討する。
設計者が設定した目的を最大化するアセンブリを生成するポリシーを学ぶために,強化学習と自己再生を用いたアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.2691047660244335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With this work, we investigate the use of Reinforcement Learning (RL) for the
generation of spatial assemblies, by combining ideas from Procedural Generation
algorithms (Wave Function Collapse algorithm (WFC)) and RL for Game Solving.
WFC is a Generative Design algorithm, inspired by Constraint Solving. In WFC,
one defines a set of tiles/blocks and constraints and the algorithm generates
an assembly that satisfies these constraints. Casting the problem of generation
of spatial assemblies as a Markov Decision Process whose states transitions are
defined by WFC, we propose an algorithm that uses Reinforcement Learning and
Self-Play to learn a policy that generates assemblies that maximize objectives
set by the designer. Finally, we demonstrate the use of our Spatial Assembly
algorithm in Architecture Design.
- Abstract(参考訳): 本研究では,空間集合生成における強化学習(Reinforcement Learning, RL)の利用について, 逐次生成アルゴリズム(Wave Function Collapse Algorithm, WFC)とゲーム解決のためのRLのアイデアを組み合わせて検討する。
WFC は Constraint Solving にインスパイアされた生成設計アルゴリズムである。
WFCでは、タイル/ブロックと制約のセットを定義し、アルゴリズムはこれらの制約を満たすアセンブリを生成する。
状態遷移をwfcで定義したマルコフ決定プロセスとして空間集合の生成の問題を取り上げ,強化学習と自己遊びを用いて,設計者が設定した目標を最大化する集合を生成するポリシを学習するアルゴリズムを提案する。
最後に,建築設計における空間集合アルゴリズムの活用を実演する。
- 全文 参考訳へのリンク
関連論文リスト
- RL4ReAl: Reinforcement Learning for Register Allocation [2.449909275410288]
本稿では,多エージェント階層型強化学習を活用したレジスタ配置問題に対する新しい解を提案する。
与えられた命令セットアーキテクチャの問題を正確に定義する制約を定式化し、生成したコードが意味的正当性を保持することを保証する。
また、トレーニングと推論のためのモジュール的で効率的なコンパイラインターフェースを提供するgRPCベースのフレームワークも開発しています。
論文 参考訳(メタデータ) (2022-04-05T06:30:03Z) - Policy Architectures for Compositional Generalization in Control [71.61675703776628]
本稿では,タスクにおけるエンティティベースの構成構造をモデル化するためのフレームワークを提案する。
私たちのポリシーは柔軟で、アクションプリミティブを必要とせずにエンドツーエンドでトレーニングできます。
論文 参考訳(メタデータ) (2022-03-10T06:44:24Z) - Assessing Policy, Loss and Planning Combinations in Reinforcement
Learning using a New Modular Architecture [0.0]
モデルベース強化学習エージェントに適した新しいモジュール型ソフトウェアアーキテクチャを提案する。
計画アルゴリズム,ポリシー,損失関数の最適組み合わせは問題に大きく依存していることが示される。
論文 参考訳(メタデータ) (2022-01-08T18:30:25Z) - Constraint Sampling Reinforcement Learning: Incorporating Expertise For
Faster Learning [43.562783189118]
本稿では,人間の洞察を高速学習に組み込むための実践的アルゴリズムを提案する。
我々のアルゴリズムであるConstraint Sampling Reinforcement Learning (CSRL)は、事前のドメイン知識をRLポリシーの制約/制約として組み込む。
すべてのケースにおいて、CSRLはベースラインよりも早く良いポリシーを学ぶ。
論文 参考訳(メタデータ) (2021-12-30T22:02:42Z) - Sequoia: A Software Framework to Unify Continual Learning Research [17.569902659136634]
私たちはこのアイデアをSequoiaというソフトウェアフレームワークとして公開しています。
Sequoiaは、Continuous Supervised Learning(CSL)とContinuous Reinforcement Learning(CRL)の両方のドメインから、さまざまな設定を特徴としている。
論文 参考訳(メタデータ) (2021-08-02T16:07:21Z) - Composable Learning with Sparse Kernel Representations [110.19179439773578]
再生カーネルヒルベルト空間におけるスパース非パラメトリック制御系を学習するための強化学習アルゴリズムを提案する。
正規化アドバンテージ関数を通じてステートアクション関数の構造を付与することにより、このアプローチのサンプル複雑さを改善します。
2次元環境下を走行しながらレーザースキャナーを搭載したロボットの複数シミュレーションにおける障害物回避政策の学習に関するアルゴリズムの性能を実証する。
論文 参考訳(メタデータ) (2021-03-26T13:58:23Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - SeaPearl: A Constraint Programming Solver guided by Reinforcement
Learning [0.0]
本稿では,Juliaで実装された新しい制約プログラミング問題であるSeaPearlの概念実証について述べる。
seapearlは強化学習を使用して分岐決定を学ぶために機械学習ルーチンをサポートする。
産業用ソリューションとはまだ競合していないが、seapearlは柔軟でオープンソースなフレームワークを提供することを目指している。
論文 参考訳(メタデータ) (2021-02-18T07:34:38Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。