論文の概要: A framework to compare music generative models using automatic
evaluation metrics extended to rhythm
- arxiv url: http://arxiv.org/abs/2101.07669v1
- Date: Tue, 19 Jan 2021 15:04:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 01:01:51.494350
- Title: A framework to compare music generative models using automatic
evaluation metrics extended to rhythm
- Title(参考訳): リズムに拡張された自動評価指標を用いた音楽生成モデルの比較
- Authors: Sebastian Garcia-Valencia, Alejandro Betancourt, Juan G.
Lalinde-Pulido
- Abstract要約: 本稿では,前回の研究で提示された,リズムを考慮せず,設計決定を下すための枠組みを取り上げ,単音素音楽作成における2つのrnnメモリセルの性能評価のためにリズムサポートを付加した。
モデルでは,音素変換の処理を考慮し,リズムサポートを付加した幾何学に基づく自動計測値を用いて,生成した楽曲の質を評価する。
- 参考スコア(独自算出の注目度): 69.2737664640826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To train a machine learning model is necessary to take numerous decisions
about many options for each process involved, in the field of sequence
generation and more specifically of music composition, the nature of the
problem helps to narrow the options but at the same time, some other options
appear for specific challenges. This paper takes the framework proposed in a
previous research that did not consider rhythm to make a series of design
decisions, then, rhythm support is added to evaluate the performance of two RNN
memory cells in the creation of monophonic music. The model considers the
handling of music transposition and the framework evaluates the quality of the
generated pieces using automatic quantitative metrics based on geometry which
have rhythm support added as well.
- Abstract(参考訳): 機械学習モデルをトレーニングするには、各プロセス、シーケンス生成、特に音楽作曲の分野において、多くの選択肢について多くの決定を下す必要があるが、問題の性質は選択肢を狭めるのに役立つが、同時に、特定の課題のために他の選択肢が現れる。
本稿では,前回の研究で提示された,リズムを考慮せず,設計決定を下すための枠組みを取り上げ,単音素音楽作成における2つのrnnメモリセルの性能評価のためにリズムサポートを付加した。
モデルでは,音素変換の処理を考慮し,リズムサポートを付加した幾何学に基づく自動計測値を用いて,生成した楽曲の品質を評価する。
関連論文リスト
- A Survey of Music Generation in the Context of Interaction [3.6522809408725223]
機械学習は、メロディーとポリフォニックの両方の曲の作曲と生成に成功している。
これらのモデルのほとんどは、ライブインタラクションによる人間と機械の共創には適していない。
論文 参考訳(メタデータ) (2024-02-23T12:41:44Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - Towards Context-Aware Neural Performance-Score Synchronisation [2.0305676256390934]
音楽の同期は、音楽の複数の表現を統一的にナビゲートする手段を提供する。
従来の同期手法は知識駆動と性能分析のアプローチを用いてアライメントを計算する。
このPhDは、データ駆動型コンテクスト対応アライメントアプローチの提案により、パフォーマンススコア同期の研究をさらに進める。
論文 参考訳(メタデータ) (2022-05-31T16:45:25Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
本稿では,非並列音声変換手法である非並列音声変換法(seq2seq)を提案する。
本手法では,ボトルネック特徴抽出器(BNE)とセック2セック合成モジュールを組み合わせる。
主観的および主観的評価は,提案手法が自然性と話者類似性の両方において優れた音声変換性能を有することを示す。
論文 参考訳(メタデータ) (2020-09-06T13:01:06Z) - Score-informed Networks for Music Performance Assessment [64.12728872707446]
MPAモデルにスコア情報を組み込んだディープニューラルネットワークに基づく手法はまだ研究されていない。
スコアインフォームド性能評価が可能な3つのモデルを提案する。
論文 参考訳(メタデータ) (2020-08-01T07:46:24Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
本稿では,オンライン伴奏生成のための深層強化学習アルゴリズムを提案する。
提案アルゴリズムは人体に応答し,メロディック,ハーモニック,多種多様な機械部品を生成する。
論文 参考訳(メタデータ) (2020-02-08T03:53:52Z) - Continuous Melody Generation via Disentangled Short-Term Representations
and Structural Conditions [14.786601824794369]
ユーザが指定したシンボリックシナリオと過去の音楽コンテキストを組み合わせることで,メロディーを構成するモデルを提案する。
本モデルでは,8拍子の音符列を基本単位として長い旋律を生成でき,一貫したリズムパターン構造を他の特定の歌と共有することができる。
その結果,本モデルが生成する音楽は,顕著な繰り返し構造,豊かな動機,安定したリズムパターンを有する傾向が示唆された。
論文 参考訳(メタデータ) (2020-02-05T06:23:44Z) - Modeling Musical Structure with Artificial Neural Networks [0.0]
音楽構造モデリングのさまざまな側面に対する人工知能の適用について検討する。
Gated Autoencoder(GAE)というコネクショナリストモデルを用いて,楽曲の断片間の変換を学習する方法を示す。
本稿では,ポリフォニック・ミュージックを区間の連続として表現するGAEの特別な予測訓練を提案する。
論文 参考訳(メタデータ) (2020-01-06T18:35:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。