論文の概要: Progressive Rock Music Classification
- arxiv url: http://arxiv.org/abs/2504.10821v1
- Date: Tue, 15 Apr 2025 02:48:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:11:03.128229
- Title: Progressive Rock Music Classification
- Title(参考訳): プログレッシブロックミュージック分類
- Authors: Arpan Nagar, Joseph Bensabat, Jokent Gaza, Moinak Dey,
- Abstract要約: 本研究では,複雑な構成と多種多様な楽器を特徴とするジャンルである,プログレッシブ・ロック音楽の分類について検討する。
我々は、スペクトログラム、Mel-Frequency Cepstral Coefficients (MFCC)、クロマグラム、歌のスニペットからのビート位置などの総合的なオーディオ特徴を抽出した。
スニペットレベルの予測を最終曲分類に集約するために、すべての投票を勝者とする戦略が採用された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study investigates the classification of progressive rock music, a genre characterized by complex compositions and diverse instrumentation, distinct from other musical styles. Addressing this Music Information Retrieval (MIR) task, we extracted comprehensive audio features, including spectrograms, Mel-Frequency Cepstral Coefficients (MFCCs), chromagrams, and beat positions from song snippets using the Librosa library. A winner-take-all voting strategy was employed to aggregate snippet-level predictions into final song classifications. We conducted a comparative analysis of various machine learning techniques. Ensemble methods, encompassing Bagging (Random Forest, ExtraTrees, Bagging Classifier) and Boosting (XGBoost, Gradient Boosting), were explored, utilizing Principal Component Analysis (PCA) for dimensionality reduction to manage computational constraints with high-dimensional feature sets. Additionally, deep learning approaches were investigated, including the development of custom 1D Convolutional Neural Network (1D CNN) architectures (named "Zuck" and "Satya") featuring specific layer configurations, normalization, and activation functions. Furthermore, we fine-tuned a state-of-the-art Audio Spectrogram Transformer (AST) model, leveraging its attention-based mechanisms for audio classification. Performance evaluation on validation and test sets revealed varying effectiveness across models, with ensemble methods like Extra Trees achieving test accuracies up to 76.38%. This research provides insights into the application and relative performance of diverse machine learning paradigms for the nuanced task of progressive rock genre classification.
- Abstract(参考訳): 本研究では,複雑な作曲と多種多様な楽器を特徴とするジャンルであるプログレッシブ・ロック音楽の分類について検討した。
この音楽情報検索(MIR)課題に対処し,スペクトル,メル周波数ケプストラム係数(MFCC),クロマグラム,およびLibrosaライブラリを用いた楽曲スニペットからのビート位置などの包括的音声特徴を抽出した。
スニペットレベルの予測を最終曲分類に集約するために、すべての投票を勝者とする戦略が採用された。
各種機械学習技術の比較分析を行った。
高次元特徴集合を用いて計算制約を管理するために,主成分分析(PCA)を用いて,バッギング(Random Forest, ExtraTrees, Bagging Classifier)とブーイング(XGBoost, Gradient Boosting)を包含するアンサンブル法を検討した。
さらに、特定のレイヤ構成、正規化、アクティベーション機能を備えたカスタム1D畳み込みニューラルネットワーク(1D CNN)アーキテクチャ(ZuckとSatya)の開発など、ディープラーニングのアプローチも検討された。
さらに,現在最先端のオーディオスペクトログラム変換器 (AST) モデルを微調整し,そのアテンションに基づく音声分類機構を利用した。
検証とテストセットのパフォーマンス評価により、エクストラツリーのようなアンサンブル手法でテスト精度を76.38%まで向上した。
本研究は,プログレッシブ・ロック・ジャンル分類の微妙な課題に対する多様な機械学習パラダイムの適用と相対的性能に関する知見を提供する。
関連論文リスト
- Improving Musical Instrument Classification with Advanced Machine Learning Techniques [0.0]
近年の機械学習、特にディープラーニングの進歩により、楽器を音声信号から識別し分類する能力が強化されている。
本研究では,Naive Bayes,Support Vector Machines,Random Forests,AdaBoostやXGBoostといったBootingテクニックなど,さまざまな機械学習手法を適用した。
これらの手法の有効性を,注釈付き音声の大規模リポジトリであるN Synthデータセットを用いて評価した。
論文 参考訳(メタデータ) (2024-11-01T00:13:46Z) - Audio Processing using Pattern Recognition for Music Genre Classification [0.0]
本研究は,GTZANデータセットを用いた音楽ジャンル分類における機械学習手法の適用について検討する。
パーソナライズされた音楽レコメンデーションの需要が高まる中、私たちは、ブルース、クラシック、ジャズ、ヒップホップ、カントリーという5つのジャンルの分類に注力しました。
ANNモデルは最高の性能を示し、検証精度は92.44%に達した。
論文 参考訳(メタデータ) (2024-10-19T05:44:05Z) - Music Genre Classification using Large Language Models [50.750620612351284]
本稿では,音楽ジャンル分類のための事前学習された大規模言語モデル(LLM)のゼロショット機能を利用する。
提案手法は、音声信号を20ミリ秒のチャンクに分割し、畳み込み特徴エンコーダで処理する。
推論中、個々のチャンクの予測は最終ジャンル分類のために集約される。
論文 参考訳(メタデータ) (2024-10-10T19:17:56Z) - Music Genre Classification: Training an AI model [0.0]
音楽ジャンル分類は、音声信号の処理に機械学習モデルと技法を利用する分野である。
本研究では,音楽ジャンル分類のための機械学習アルゴリズムについて,音声信号から抽出した特徴を用いて検討する。
ジャンル分類のための機械学習モデルの堅牢性を評価し、その結果を比較することを目的としている。
論文 参考訳(メタデータ) (2024-05-23T23:07:01Z) - Music Genre Classification: A Comparative Analysis of CNN and XGBoost
Approaches with Mel-frequency cepstral coefficients and Mel Spectrograms [0.0]
提案した畳み込みニューラルネットワーク(CNN)、完全連結層(FC)を持つVGG16、異なる特徴に対するeXtreme Gradient Boosting(XGBoost)アプローチの3つのモデルの性能について検討した。
さらに,データ前処理フェーズにデータセグメンテーションを適用することで,CNNの性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-01-09T01:50:31Z) - Low-complexity deep learning frameworks for acoustic scene
classification [64.22762153453175]
音響シーン分類(ASC)のための低複雑さ深層学習フレームワークを提案する。
提案するフレームワークは、フロントエンドのスペクトログラム抽出、オンラインデータ拡張、バックエンドの分類、予測される確率の後期融合の4つの主要なステップに分けることができる。
DCASE 2022 Task 1 Development データセットで実施した実験は,低複雑さの要求を十分に満たし,最も高い分類精度を 60.1% で達成した。
論文 参考訳(メタデータ) (2022-06-13T11:41:39Z) - A framework to compare music generative models using automatic
evaluation metrics extended to rhythm [69.2737664640826]
本稿では,前回の研究で提示された,リズムを考慮せず,設計決定を下すための枠組みを取り上げ,単音素音楽作成における2つのrnnメモリセルの性能評価のためにリズムサポートを付加した。
モデルでは,音素変換の処理を考慮し,リズムサポートを付加した幾何学に基づく自動計測値を用いて,生成した楽曲の質を評価する。
論文 参考訳(メタデータ) (2021-01-19T15:04:46Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - Score-informed Networks for Music Performance Assessment [64.12728872707446]
MPAモデルにスコア情報を組み込んだディープニューラルネットワークに基づく手法はまだ研究されていない。
スコアインフォームド性能評価が可能な3つのモデルを提案する。
論文 参考訳(メタデータ) (2020-08-01T07:46:24Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
この論文は、音声分析とコンピュータビジョンを組み合わせて、マルチモーダルの観点から音楽情報検索(MIR)タスクにアプローチする。
本研究の主な仮説は、ジャンルやテーマなど特定の表現的カテゴリーを視覚的内容のみに基づいて認識できるという観察に基づいている。
実験は、3つのMIRタスクに対して行われ、アーティスト識別、音楽ジェネア分類、クロスジェネア分類を行う。
論文 参考訳(メタデータ) (2020-02-01T17:57:14Z) - Modeling Musical Structure with Artificial Neural Networks [0.0]
音楽構造モデリングのさまざまな側面に対する人工知能の適用について検討する。
Gated Autoencoder(GAE)というコネクショナリストモデルを用いて,楽曲の断片間の変換を学習する方法を示す。
本稿では,ポリフォニック・ミュージックを区間の連続として表現するGAEの特別な予測訓練を提案する。
論文 参考訳(メタデータ) (2020-01-06T18:35:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。