Exploring ensembles and uncertainty minimization in denoising networks
- URL: http://arxiv.org/abs/2101.09798v1
- Date: Sun, 24 Jan 2021 20:48:18 GMT
- Title: Exploring ensembles and uncertainty minimization in denoising networks
- Authors: Xiaoqi Ma
- Abstract summary: We propose a fusion model consisting of two attention modules, which focus on assigning the proper weights to pixels and channels.
The experimental results show that our model achieves better performance on top of the baseline of regular pre-trained denoising networks.
- Score: 0.522145960878624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of neural networks has greatly improved the performance in
various computer vision tasks. In the filed of image denoising, convolutional
neural network based methods such as DnCNN break through the limits of
classical methods, achieving better quantitative results. However, the
epistemic uncertainty existing in neural networks limits further improvements
in their performance over denoising tasks. Therefore, we develop and study
different solutions to minimize uncertainty and further improve the removal of
noise. From the perspective of ensemble learning, we implement manipulations to
noisy images from the point of view of spatial and frequency domains and then
denoise them using pre-trained denoising networks. We propose a fusion model
consisting of two attention modules, which focus on assigning the proper
weights to pixels and channels. The experimental results show that our model
achieves better performance on top of the baseline of regular pre-trained
denoising networks.
Related papers
- Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - Dense-Sparse Deep Convolutional Neural Networks Training for Image Denoising [0.6215404942415159]
Deep learning methods such as the convolutional neural networks have gained prominence in the area of image denoising.
Deep denoising convolutional neural networks use many feed-forward convolution layers with added regularization methods of batch normalization and residual learning to speed up training and improve denoising performance significantly.
In this paper, we show that by employing an enhanced dense-sparse-dense network training procedure to the deep denoising convolutional neural networks, comparable denoising performance level can be achieved at a significantly reduced number of trainable parameters.
arXiv Detail & Related papers (2021-07-10T15:14:19Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
arXiv Detail & Related papers (2021-01-19T16:37:57Z) - Deep Gaussian Denoiser Epistemic Uncertainty and Decoupled
Dual-Attention Fusion [11.085432358616671]
We focus on pushing the performance limits of state-of-the-art methods on Gaussian denoising.
We propose a model-agnostic approach for reducing epistemic uncertainty while using only a single pretrained network.
Our results significantly improve over the state-of-the-art baselines and across varying noise levels.
arXiv Detail & Related papers (2021-01-12T17:38:32Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral
Analysis [23.11994688706024]
We propose a discrete wavelet denoising CNN (WDnCNN) which restores images corrupted by various noise with a single model.
To address this issue, we present a band normalization module (BNM) to normalize the coefficients from different parts of the frequency spectrum.
We evaluate the proposed WDnCNN, and compare it with other state-of-the-art denoisers.
arXiv Detail & Related papers (2020-06-28T05:25:50Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.