Motion Inspired Unsupervised Perception and Prediction in Autonomous
Driving
- URL: http://arxiv.org/abs/2210.08061v1
- Date: Fri, 14 Oct 2022 18:55:44 GMT
- Title: Motion Inspired Unsupervised Perception and Prediction in Autonomous
Driving
- Authors: Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R. Qi, Xinchen Yan, Scott
Ettinger, Dragomir Anguelov
- Abstract summary: This paper pioneers a novel and challenging direction, i.e., training perception and prediction models to understand open-set moving objects.
Our proposed framework uses self-learned flow to trigger an automated meta labeling pipeline to achieve automatic supervision.
We show that our approach generates highly promising results in open-set 3D detection and trajectory prediction.
- Score: 29.731790562352344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based perception and prediction modules in modern autonomous driving
systems typically rely on expensive human annotation and are designed to
perceive only a handful of predefined object categories. This closed-set
paradigm is insufficient for the safety-critical autonomous driving task, where
the autonomous vehicle needs to process arbitrarily many types of traffic
participants and their motion behaviors in a highly dynamic world. To address
this difficulty, this paper pioneers a novel and challenging direction, i.e.,
training perception and prediction models to understand open-set moving
objects, with no human supervision. Our proposed framework uses self-learned
flow to trigger an automated meta labeling pipeline to achieve automatic
supervision. 3D detection experiments on the Waymo Open Dataset show that our
method significantly outperforms classical unsupervised approaches and is even
competitive to the counterpart with supervised scene flow. We further show that
our approach generates highly promising results in open-set 3D detection and
trajectory prediction, confirming its potential in closing the safety gap of
fully supervised systems.
Related papers
- Enhancing End-to-End Autonomous Driving with Latent World Model [78.22157677787239]
We propose a novel self-supervised method to enhance end-to-end driving without the need for costly labels.
Our framework textbfLAW uses a LAtent World model to predict future latent features based on the predicted ego actions and the latent feature of the current frame.
As a result, our approach achieves state-of-the-art performance in both open-loop and closed-loop benchmarks without costly annotations.
arXiv Detail & Related papers (2024-06-12T17:59:21Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Self-Supervised Bird's Eye View Motion Prediction with Cross-Modality
Signals [38.20643428486824]
Learning the dense bird's eye view (BEV) motion flow in a self-supervised manner is an emerging research for robotics and autonomous driving.
Current self-supervised methods mainly rely on point correspondences between point clouds.
We introduce a novel cross-modality self-supervised training framework that effectively addresses these issues by leveraging multi-modality data.
arXiv Detail & Related papers (2024-01-21T14:09:49Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - Multimodal Detection of Unknown Objects on Roads for Autonomous Driving [4.3310896118860445]
We propose a novel pipeline to detect unknown objects.
We make use of lidar and camera data by combining state-of-the art detection models in a sequential manner.
arXiv Detail & Related papers (2022-05-03T10:58:41Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Physically Feasible Vehicle Trajectory Prediction [3.3748750222488657]
We describe three important properties -- physical realism guarantees, system maintainability, and sample efficiency.
We introduce PTNet, a novel approach for vehicle trajectory prediction that is a hybrid of the classical pure pursuit path tracking algorithm and modern graph-based neural networks.
arXiv Detail & Related papers (2021-04-29T22:13:41Z) - Self-Supervised Pillar Motion Learning for Autonomous Driving [10.921208239968827]
We propose a learning framework that leverages free supervisory signals from point clouds and paired camera images to estimate motion purely via self-supervision.
Our model involves a point cloud based structural consistency augmented with probabilistic motion masking as well as a cross-sensor motion regularization to realize the desired self-supervision.
arXiv Detail & Related papers (2021-04-18T02:32:08Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.