論文の概要: Extensive Studies of the Neutron Star Equation of State from the Deep
Learning Inference with the Observational Data Augmentation
- arxiv url: http://arxiv.org/abs/2101.08156v1
- Date: Wed, 20 Jan 2021 14:27:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 01:13:45.342168
- Title: Extensive Studies of the Neutron Star Equation of State from the Deep
Learning Inference with the Observational Data Augmentation
- Title(参考訳): 観測データ拡張による深層学習推論による中性子星の状態方程式の広範的研究
- Authors: Yuki Fujimoto, Kenji Fukushima, Koichi Murase
- Abstract要約: 質量と半径の実際の観測データを用いて、状態の中性子星方程式(EoS)の深層学習推論について議論する。
観測に不確実性を組み込む深層学習法では,観測の不確実性に対応する雑音変動を伴うトレーニングデータを増強する。
このデータ拡張は,ニューラルネットワークアーキテクチャをチューニングすることなく,過剰フィッティングを回避するための有用な手法である可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss deep learning inference for the neutron star equation of state
(EoS) using the real observational data of the mass and the radius. We make a
quantitative comparison between the conventional polynomial regression and the
neural network approach for the EoS parametrization. For our deep learning
method to incorporate uncertainties in observation, we augment the training
data with noise fluctuations corresponding to observational uncertainties.
Deduced EoSs can accommodate a weak first-order phase transition, and we make a
histogram for likely first-order regions. We also find that our observational
data augmentation has a byproduct to tame the overfitting behavior. To check
the performance improved by the data augmentation, we set up a toy model as the
simplest inference problem to recover a double-peaked function and monitor the
validation loss. We conclude that the data augmentation could be a useful
technique to evade the overfitting without tuning the neural network
architecture such as inserting the dropout.
- Abstract(参考訳): 中性子星の状態方程式(EoS)の深層学習推定について,質量と半径の実観測データを用いて検討した。
従来の多項式回帰とニューラルネットワークによるeosパラメトリゼーションを定量的に比較した。
観測に不確実性を組み込む深層学習法では,観測の不確実性に対応する雑音変動を伴うトレーニングデータを増強する。
推定されたEoSsは、弱い一階相転移に対応でき、おそらく一階領域のヒストグラムを作成する。
また, 観測データの増大は, 過度に適合する行動を抑える副産物であることがわかった。
データ拡張によって性能が向上するのを確認するために,ダブルピーク関数を復元し,検証損失を監視するための最も単純な推論問題として,toyモデルを設定した。
我々は、データ拡張は、ドロップアウトを挿入するなどのニューラルネットワークアーキテクチャをチューニングすることなく、過剰フィッティングを回避するのに有用なテクニックであると結論づける。
関連論文リスト
- Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
本稿では,観測画像データから因果構造を推定する作業について考察する。
Diff-SCMは,近年の発電エネルギーモデルの発展を基盤とした構造因果モデルである。
Diff-SCMはMNISTデータに基づくベースラインよりも現実的で最小限のデファクトアルを生成しており、ImageNetデータにも適用可能である。
論文 参考訳(メタデータ) (2022-02-21T12:23:01Z) - DeepAdversaries: Examining the Robustness of Deep Learning Models for
Galaxy Morphology Classification [47.38422424155742]
銀河の形態分類では、画像データにおける摂動の影響について検討する。
ドメイン適応によるトレーニングはモデルロバスト性を向上し、これらの摂動の影響を緩和することを示す。
論文 参考訳(メタデータ) (2021-12-28T21:29:02Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Machine learning on DNA-encoded library count data using an
uncertainty-aware probabilistic loss function [1.5559232742666467]
本稿では, 個々の分子のDEL富化を, 独自の負の対数類似損失関数を用いて学習するための回帰的アプローチを示す。
このアプローチは、CAIXに対してスクリーニングされた108k化合物のデータセットと、sEHとSIRT2に対してスクリーニングされた5.7M化合物のデータセットについて説明する。
論文 参考訳(メタデータ) (2021-08-27T19:37:06Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
本研究では,単眼深度推定器SC-Depthを提案する。
スケール一貫性予測の能力により,我々の単分子学習深層ネットワークは簡単にORB-SLAM2システムに統合可能であることを示す。
提案したハイブリッドPseudo-RGBD SLAMは、KITTIにおいて魅力的な結果を示し、追加のトレーニングなしでKAISTデータセットにうまく一般化する。
論文 参考訳(メタデータ) (2021-05-25T02:17:56Z) - Model discovery in the sparse sampling regime [0.0]
深層学習が部分微分方程式のモデル発見をいかに改善できるかを示す。
その結果、ディープラーニングに基づくモデル発見は、基礎となる方程式を復元することができる。
我々は合成集合と実験集合の両方について主張する。
論文 参考訳(メタデータ) (2021-05-02T06:27:05Z) - More data or more parameters? Investigating the effect of data structure
on generalization [17.249712222764085]
データの特性は、トレーニング例の数とトレーニングパラメータの数の関数としてテストエラーに影響を与えます。
ラベル内のノイズや入力データの強い異方性がテストエラーと同じような役割を担っていることを示す。
論文 参考訳(メタデータ) (2021-03-09T16:08:41Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。