Extensive Studies of the Neutron Star Equation of State from the Deep
Learning Inference with the Observational Data Augmentation
- URL: http://arxiv.org/abs/2101.08156v1
- Date: Wed, 20 Jan 2021 14:27:12 GMT
- Title: Extensive Studies of the Neutron Star Equation of State from the Deep
Learning Inference with the Observational Data Augmentation
- Authors: Yuki Fujimoto, Kenji Fukushima, Koichi Murase
- Abstract summary: We discuss deep learning inference for the neutron star equation of state (EoS) using the real observational data of the mass and the radius.
For our deep learning method to incorporate uncertainties in observation, we augment the training data with noise fluctuations corresponding to observational uncertainties.
We conclude that the data augmentation could be a useful technique to evade the overfitting without tuning the neural network architecture.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss deep learning inference for the neutron star equation of state
(EoS) using the real observational data of the mass and the radius. We make a
quantitative comparison between the conventional polynomial regression and the
neural network approach for the EoS parametrization. For our deep learning
method to incorporate uncertainties in observation, we augment the training
data with noise fluctuations corresponding to observational uncertainties.
Deduced EoSs can accommodate a weak first-order phase transition, and we make a
histogram for likely first-order regions. We also find that our observational
data augmentation has a byproduct to tame the overfitting behavior. To check
the performance improved by the data augmentation, we set up a toy model as the
simplest inference problem to recover a double-peaked function and monitor the
validation loss. We conclude that the data augmentation could be a useful
technique to evade the overfitting without tuning the neural network
architecture such as inserting the dropout.
Related papers
- Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - How more data can hurt: Instability and regularization in next-generation reservoir computing [0.0]
We show that a more extreme version of the phenomenon occurs in data-driven models of dynamical systems.
We find that, despite learning a better representation of the flow map with more training data, NGRC can adopt an ill-conditioned integrator'' and lose stability.
arXiv Detail & Related papers (2024-07-11T16:22:13Z) - Neural Incremental Data Assimilation [8.817223931520381]
We introduce a deep learning approach where the physical system is modeled as a sequence of coarse-to-fine Gaussian prior distributions parametrized by a neural network.
This allows us to define an assimilation operator, which is trained in an end-to-end fashion to minimize the reconstruction error.
We illustrate our approach on chaotic dynamical physical systems with sparse observations, and compare it to traditional variational data assimilation methods.
arXiv Detail & Related papers (2024-06-21T11:42:55Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - SimPINNs: Simulation-Driven Physics-Informed Neural Networks for
Enhanced Performance in Nonlinear Inverse Problems [0.0]
This paper introduces a novel approach to solve inverse problems by leveraging deep learning techniques.
The objective is to infer unknown parameters that govern a physical system based on observed data.
arXiv Detail & Related papers (2023-09-27T06:34:55Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
This study proposes an Implicit Counterfactual Data Augmentation method to remove spurious correlations and make stable predictions.
Experiments have been conducted across various biased learning scenarios covering both image and text datasets.
arXiv Detail & Related papers (2023-04-26T10:36:40Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.