SimPINNs: Simulation-Driven Physics-Informed Neural Networks for
Enhanced Performance in Nonlinear Inverse Problems
- URL: http://arxiv.org/abs/2309.16729v1
- Date: Wed, 27 Sep 2023 06:34:55 GMT
- Title: SimPINNs: Simulation-Driven Physics-Informed Neural Networks for
Enhanced Performance in Nonlinear Inverse Problems
- Authors: Sidney Besnard, Fr\'ed\'eric Jurie (UNICAEN), Jalal M. Fadili (NU,
ENSICAEN, GREYC)
- Abstract summary: This paper introduces a novel approach to solve inverse problems by leveraging deep learning techniques.
The objective is to infer unknown parameters that govern a physical system based on observed data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel approach to solve inverse problems by
leveraging deep learning techniques. The objective is to infer unknown
parameters that govern a physical system based on observed data. We focus on
scenarios where the underlying forward model demonstrates pronounced nonlinear
behaviour, and where the dimensionality of the unknown parameter space is
substantially smaller than that of the observations. Our proposed method builds
upon physics-informed neural networks (PINNs) trained with a hybrid loss
function that combines observed data with simulated data generated by a known
(approximate) physical model. Experimental results on an orbit restitution
problem demonstrate that our approach surpasses the performance of standard
PINNs, providing improved accuracy and robustness.
Related papers
- Towards Model Discovery Using Domain Decomposition and PINNs [44.99833362998488]
The study evaluates the performance of two approaches, namely Physics-Informed Neural Networks (PINNs) and Finite Basis Physics-Informed Neural Networks (FBPINNs)
We find a better performance for the FBPINN approach compared to the vanilla PINN approach, even in cases with data from only a quasi-stationary time domain with few dynamics.
arXiv Detail & Related papers (2024-10-02T14:38:37Z) - Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - Equation identification for fluid flows via physics-informed neural networks [46.29203572184694]
We present a new benchmark problem for inverse PINNs based on a parametric sweep of the 2D Burgers' equation with rotational flow.
We show that a novel strategy that alternates between first- and second-order optimization proves superior to typical first-order strategies for estimating parameters.
arXiv Detail & Related papers (2024-08-30T13:17:57Z) - Nonlinear Schrödinger Network [0.8249694498830558]
Deep neural networks (DNNs) have achieved exceptional performance across various fields by learning complex nonlinear mappings from large-scale datasets.
To address these issues, hybrid approaches that integrate physics with AI are gaining interest.
This paper introduces a novel physics-based AI model called the "Nonlinear Schr"odinger Network"
arXiv Detail & Related papers (2024-07-19T17:58:00Z) - Neural Incremental Data Assimilation [8.817223931520381]
We introduce a deep learning approach where the physical system is modeled as a sequence of coarse-to-fine Gaussian prior distributions parametrized by a neural network.
This allows us to define an assimilation operator, which is trained in an end-to-end fashion to minimize the reconstruction error.
We illustrate our approach on chaotic dynamical physical systems with sparse observations, and compare it to traditional variational data assimilation methods.
arXiv Detail & Related papers (2024-06-21T11:42:55Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
We develop a multi-network PINN for both the forward problem and for direct inversion of nonlinear fault friction parameters.
We present the computational PINN framework for strike-slip faults in 1D and 2D subject to rate-and-state friction.
We find that the network for the parameter inversion at the fault performs much better than the network for material displacements to which it is coupled.
arXiv Detail & Related papers (2023-12-14T23:53:25Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Parameter Estimation with Dense and Convolutional Neural Networks
Applied to the FitzHugh-Nagumo ODE [0.0]
We present deep neural networks using dense and convolutional layers to solve an inverse problem, where we seek to estimate parameters of a Fitz-Nagumo model.
We demonstrate that deep neural networks have the potential to estimate parameters in dynamical models and processes, and they are capable of predicting parameters accurately for the framework.
arXiv Detail & Related papers (2020-12-12T01:20:42Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.