Generative Zero-shot Network Quantization
- URL: http://arxiv.org/abs/2101.08430v1
- Date: Thu, 21 Jan 2021 04:10:04 GMT
- Title: Generative Zero-shot Network Quantization
- Authors: Xiangyu He, Qinghao Hu, Peisong Wang, Jian Cheng
- Abstract summary: Convolutional neural networks are able to learn realistic image priors from numerous training samples in low-level image generation and restoration.
We show that, for high-level image recognition tasks, we can further reconstruct "realistic" images of each category by leveraging intrinsic Batch Normalization (BN) statistics without any training data.
- Score: 41.75769117366117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks are able to learn realistic image priors from
numerous training samples in low-level image generation and restoration. We
show that, for high-level image recognition tasks, we can further reconstruct
"realistic" images of each category by leveraging intrinsic Batch Normalization
(BN) statistics without any training data. Inspired by the popular VAE/GAN
methods, we regard the zero-shot optimization process of synthetic images as
generative modeling to match the distribution of BN statistics. The generated
images serve as a calibration set for the following zero-shot network
quantizations. Our method meets the needs for quantizing models based on
sensitive information, \textit{e.g.,} due to privacy concerns, no data is
available. Extensive experiments on benchmark datasets show that, with the help
of generated data, our approach consistently outperforms existing data-free
quantization methods.
Related papers
- DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
We propose a framework for synthesizing classification datasets that more faithfully represents the real data distribution.
DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model.
We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets.
arXiv Detail & Related papers (2024-07-15T17:10:31Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - Training on Thin Air: Improve Image Classification with Generated Data [28.96941414724037]
Diffusion Inversion is a simple yet effective method to generate diverse, high-quality training data for image classification.
Our approach captures the original data distribution and ensures data coverage by inverting images to the latent space of Stable Diffusion.
We identify three key components that allow our generated images to successfully supplant the original dataset.
arXiv Detail & Related papers (2023-05-24T16:33:02Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - Zero-Shot Learning of a Conditional Generative Adversarial Network for
Data-Free Network Quantization [44.22469647001933]
We propose a novel method for training a conditional generative adversarial network (CGAN) without the use of training data.
Zero-shot learning of a conditional generator only needs a pre-trained discriminative (classification) model and does not need any training data.
We show the usefulness of ZS-CGAN in data-free quantization of deep neural networks.
arXiv Detail & Related papers (2022-10-26T00:05:57Z) - FewGAN: Generating from the Joint Distribution of a Few Images [95.6635227371479]
We introduce FewGAN, a generative model for generating novel, high-quality and diverse images.
FewGAN is a hierarchical patch-GAN that applies quantization at the first coarse scale, followed by a pyramid of residual fully convolutional GANs at finer scales.
In an extensive set of experiments, it is shown that FewGAN outperforms baselines both quantitatively and qualitatively.
arXiv Detail & Related papers (2022-07-18T07:11:28Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
We develop a novel framework that approximates the posterior distribution of the unknown image at each query observation.
It handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets.
arXiv Detail & Related papers (2021-10-22T10:02:48Z) - Meta Internal Learning [88.68276505511922]
Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image.
We propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively.
Our results show that the models obtained are as suitable as single-image GANs for many common image applications.
arXiv Detail & Related papers (2021-10-06T16:27:38Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.