COLLIDE-PRED: Prediction of On-Road Collision From Surveillance Videos
- URL: http://arxiv.org/abs/2101.08463v1
- Date: Thu, 21 Jan 2021 06:45:56 GMT
- Title: COLLIDE-PRED: Prediction of On-Road Collision From Surveillance Videos
- Authors: Deesha Chavan, Dev Saad and Debarati B. Chakraborty
- Abstract summary: We propose an end-to-end collision prediction system, named as COLLIDE-PRED, to predict collisions in videos.
The proposed method is experimentally validated with a number of different videos and proves to be effective in identifying accident in advance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting on-road abnormalities such as road accidents or traffic violations
is a challenging task in traffic surveillance. If such predictions can be done
in advance, many damages can be controlled. Here in our wok, we tried to
formulate a solution for automated collision prediction in traffic surveillance
videos with computer vision and deep networks. It involves object detection,
tracking, trajectory estimation, and collision prediction. We propose an
end-to-end collision prediction system, named as COLLIDE-PRED, that
intelligently integrates the information of past and future trajectories of
moving objects to predict collisions in videos. It is a pipeline that starts
with object detection, which is used for object tracking, and then trajectory
prediction is performed which concludes by collision detection. The probable
place of collision, and the objects those may cause the collision, both can be
identified correctly with COLLIDE-PRED. The proposed method is experimentally
validated with a number of different videos and proves to be effective in
identifying accident in advance.
Related papers
- Edge-Assisted ML-Aided Uncertainty-Aware Vehicle Collision Avoidance at Urban Intersections [12.812518632907771]
We present a novel framework that detects preemptively collisions at urban crossroads.
We exploit the Multi-access Edge Computing platform of 5G networks.
arXiv Detail & Related papers (2024-04-22T18:45:40Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - COPILOT: Human-Environment Collision Prediction and Localization from
Egocentric Videos [62.34712951567793]
The ability to forecast human-environment collisions from egocentric observations is vital to enable collision avoidance in applications such as VR, AR, and wearable assistive robotics.
We introduce the challenging problem of predicting collisions in diverse environments from multi-view egocentric videos captured from body-mounted cameras.
We propose a transformer-based model called COPILOT to perform collision prediction and localization simultaneously.
arXiv Detail & Related papers (2022-10-04T17:49:23Z) - TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video
Surveillance [2.1076255329439304]
Existing datasets in traffic accidents are either small-scale, not from surveillance cameras, not open-sourced, or not built for freeway scenes.
After integration and annotation by various dimensions, a large-scale traffic accidents dataset named TAD is proposed in this work.
arXiv Detail & Related papers (2022-09-26T03:00:50Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - DRIVE: Deep Reinforced Accident Anticipation with Visual Explanation [36.350348194248014]
Traffic accident anticipation aims to accurately and promptly predict the occurrence of a future accident from dashcam videos.
Existing approaches typically focus on capturing the cues of spatial and temporal context before a future accident occurs.
We propose Deep ReInforced accident anticipation with Visual Explanation, named DRIVE.
arXiv Detail & Related papers (2021-07-21T16:33:21Z) - Object Rearrangement Using Learned Implicit Collision Functions [61.90305371998561]
We propose a learned collision model that accepts scene and query object point clouds and predicts collisions for 6DOF object poses within the scene.
We leverage the learned collision model as part of a model predictive path integral (MPPI) policy in a tabletop rearrangement task.
The learned model outperforms both traditional pipelines and learned ablations by 9.8% in accuracy on a dataset of simulated collision queries.
arXiv Detail & Related papers (2020-11-21T05:36:06Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible.
Current deterministic deep neural networks could be overconfident in false predictions.
We propose an uncertainty-based accident anticipation model with relational-temporal learning.
arXiv Detail & Related papers (2020-08-01T20:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.