Real-Time Accident Detection in Traffic Surveillance Using Deep Learning
- URL: http://arxiv.org/abs/2208.06461v1
- Date: Fri, 12 Aug 2022 19:07:20 GMT
- Title: Real-Time Accident Detection in Traffic Surveillance Using Deep Learning
- Authors: Hadi Ghahremannezhad, Hang Shi, Chengjun Liu
- Abstract summary: This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
- Score: 0.8808993671472349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic detection of traffic accidents is an important emerging topic in
traffic monitoring systems. Nowadays many urban intersections are equipped with
surveillance cameras connected to traffic management systems. Therefore,
computer vision techniques can be viable tools for automatic accident
detection. This paper presents a new efficient framework for accident detection
at intersections for traffic surveillance applications. The proposed framework
consists of three hierarchical steps, including efficient and accurate object
detection based on the state-of-the-art YOLOv4 method, object tracking based on
Kalman filter coupled with the Hungarian algorithm for association, and
accident detection by trajectory conflict analysis. A new cost function is
applied for object association to accommodate for occlusion, overlapping
objects, and shape changes in the object tracking step. The object trajectories
are analyzed in terms of velocity, angle, and distance in order to detect
different types of trajectory conflicts including vehicle-to-vehicle,
vehicle-to-pedestrian, and vehicle-to-bicycle. Experimental results using real
traffic video data show the feasibility of the proposed method in real-time
applications of traffic surveillance. In particular, trajectory conflicts,
including near-accidents and accidents occurring at urban intersections are
detected with a low false alarm rate and a high detection rate. The robustness
of the proposed framework is evaluated using video sequences collected from
YouTube with diverse illumination conditions. The dataset is publicly available
at: http://github.com/hadi-ghnd/AccidentDetection.
Related papers
- Application of 2D Homography for High Resolution Traffic Data Collection
using CCTV Cameras [9.946460710450319]
This study implements a three-stage video analytics framework for extracting high-resolution traffic data from CCTV cameras.
The key components of the framework include object recognition, perspective transformation, and vehicle trajectory reconstruction.
The results of the study showed about +/- 4.5% error rate for directional traffic counts, less than 10% MSE for speed bias between camera estimates.
arXiv Detail & Related papers (2024-01-14T07:33:14Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - A Memory-Augmented Multi-Task Collaborative Framework for Unsupervised
Traffic Accident Detection in Driving Videos [22.553356096143734]
We propose a novel memory-augmented multi-task collaborative framework (MAMTCF) for unsupervised traffic accident detection in driving videos.
Our method can more accurately detect both ego-involved and non-ego accidents by simultaneously modeling appearance changes and object motions in video frames.
arXiv Detail & Related papers (2023-07-27T01:45:13Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
We show that road obstacle detection techniques ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases.
We leverage this by computing a scale map encoding the apparent size of a hypothetical object at every image location.
We then leverage this perspective map to generate training data by injecting onto the road synthetic objects whose size corresponds to the perspective foreshortening.
arXiv Detail & Related papers (2022-10-04T17:48:42Z) - TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video
Surveillance [2.1076255329439304]
Existing datasets in traffic accidents are either small-scale, not from surveillance cameras, not open-sourced, or not built for freeway scenes.
After integration and annotation by various dimensions, a large-scale traffic accidents dataset named TAD is proposed in this work.
arXiv Detail & Related papers (2022-09-26T03:00:50Z) - Incident Detection on Junctions Using Image Processing [0.0]
Trajectory information is provided by vehicle detection and tracking algorithms on visual data streamed from a fisheye camera.
The proposed system has achieved 84.6% success in vehicle detection and 96.8% success in abnormality detection on synthetic data.
arXiv Detail & Related papers (2021-04-27T19:18:05Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
State-of-the-art 3D object detectors, based on deep learning, have shown promising accuracy but are prone to over-fit to domain idiosyncrasies.
We propose a novel learning approach that drastically reduces this gap by fine-tuning the detector on pseudo-labels in the target domain.
We show, on five autonomous driving datasets, that fine-tuning the detector on these pseudo-labels substantially reduces the domain gap to new driving environments.
arXiv Detail & Related papers (2021-03-26T01:18:11Z) - Artificial Intelligence Enabled Traffic Monitoring System [3.085453921856008]
This article presents a novel approach to automatically monitor real time traffic footage using deep convolutional neural networks.
The proposed system deploys several state-of-the-art deep learning algorithms to automate different traffic monitoring needs.
arXiv Detail & Related papers (2020-10-02T22:28:02Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.