論文の概要: Adversarial Machine Learning in Text Analysis and Generation
- arxiv url: http://arxiv.org/abs/2101.08675v1
- Date: Thu, 14 Jan 2021 04:37:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 00:43:53.365904
- Title: Adversarial Machine Learning in Text Analysis and Generation
- Title(参考訳): テキスト分析・生成における逆機械学習
- Authors: Izzat Alsmadi
- Abstract要約: 本論文では,テキスト解析と生成における対比機械学習の側面と研究動向について考察する。
本稿は,ganアルゴリズム,モデル,攻撃の種類,これらの攻撃に対する防御など,この分野の主要な研究動向を要約する。
- 参考スコア(独自算出の注目度): 1.116812194101501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The research field of adversarial machine learning witnessed a significant
interest in the last few years. A machine learner or model is secure if it can
deliver main objectives with acceptable accuracy, efficiency, etc. while at the
same time, it can resist different types and/or attempts of adversarial
attacks. This paper focuses on studying aspects and research trends in
adversarial machine learning specifically in text analysis and generation. The
paper summarizes main research trends in the field such as GAN algorithms,
models, types of attacks, and defense against those attacks.
- Abstract(参考訳): 敵対的機械学習の研究分野は、ここ数年で大きな関心を集めている。
機械学習者やモデルは、許容できる精度、効率等で主目的を達成できれば安全である。
同時に、異なるタイプの攻撃や敵の攻撃に抵抗することができる。
本稿では,テキスト分析と生成を専門とする対人機械学習の側面と研究動向について述べる。
本稿は,ganアルゴリズム,モデル,攻撃の種類,これらの攻撃に対する防御など,この分野の主要な研究動向を要約する。
関連論文リスト
- Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
そこで本研究では,機械生成コンテンツの小さな摂動を回避して検出を回避すべく,より広いレベルの敵攻撃のためのフレームワークを提案する。
我々は、ホワイトボックスとブラックボックスの2つの攻撃設定を検討し、現在の検出モデルのロバスト性を高める可能性を評価するために、動的シナリオにおける逆学習を採用する。
実験の結果、現在の検出モデルは10秒で妥協でき、機械が生成したテキストを人間の書き起こしコンテンツとして誤分類する結果となった。
論文 参考訳(メタデータ) (2024-04-02T12:49:22Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Adversarial Learning in Real-World Fraud Detection: Challenges and
Perspectives [1.5373344688357016]
不正行為と敵対的攻撃は機械学習モデルを脅かす。
本稿では,不正検出システムに対する攻撃が,他の機械学習応用とどのように異なるかを述べる。
論文 参考訳(メタデータ) (2023-07-03T23:04:49Z) - Deviations in Representations Induced by Adversarial Attacks [0.0]
研究によると、ディープラーニングモデルは敵の攻撃に弱い。
この発見は研究の新たな方向性をもたらし、脆弱性のあるネットワークを攻撃して防御するためにアルゴリズムが開発された。
本稿では,敵攻撃によって引き起こされる表現の偏差を計測し,解析する手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T17:40:08Z) - "Why do so?" -- A Practical Perspective on Machine Learning Security [21.538956161215555]
我々は139人の産業従事者との攻撃発生と懸念を分析した。
私たちの結果は、デプロイされた機械学習に対する現実世界の攻撃に光を当てています。
我々の研究は、現実の敵対的機械学習に関するさらなる研究の道を開くものだ。
論文 参考訳(メタデータ) (2022-07-11T19:58:56Z) - Poisoning Attacks and Defenses on Artificial Intelligence: A Survey [3.706481388415728]
データ中毒攻撃は、トレーニングフェーズ中にモデルに供給されたデータサンプルを改ざんして、推論フェーズ中にモデルの精度を低下させる攻撃の一種である。
この研究は、この種の攻撃に対処する最新の文献で見つかった最も関連性の高い洞察と発見をまとめたものである。
実環境下での幅広いMLモデルに対するデータ中毒の影響を比較検討し,本研究の徹底的な評価を行った。
論文 参考訳(メタデータ) (2022-02-21T14:43:38Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Threat of Adversarial Attacks on Deep Learning in Computer Vision:
Survey II [86.51135909513047]
ディープラーニングは、予測を操作できる敵攻撃に対して脆弱である。
本稿では,ディープラーニングに対する敵対的攻撃におけるコンピュータビジョンコミュニティの貢献を概観する。
この領域では、非専門家に技術的な用語の定義を提供する。
論文 参考訳(メタデータ) (2021-08-01T08:54:47Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。