論文の概要: Adversarial Learning in Real-World Fraud Detection: Challenges and
Perspectives
- arxiv url: http://arxiv.org/abs/2307.01390v1
- Date: Mon, 3 Jul 2023 23:04:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 18:45:48.739360
- Title: Adversarial Learning in Real-World Fraud Detection: Challenges and
Perspectives
- Title(参考訳): 現実世界の不正検出における敵対的学習 : 挑戦と展望
- Authors: Danele Lunghi, Alkis Simitsis, Olivier Caelen, Gianluca Bontempi
- Abstract要約: 不正行為と敵対的攻撃は機械学習モデルを脅かす。
本稿では,不正検出システムに対する攻撃が,他の機械学習応用とどのように異なるかを述べる。
- 参考スコア(独自算出の注目度): 1.5373344688357016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data economy relies on data-driven systems and complex machine learning
applications are fueled by them. Unfortunately, however, machine learning
models are exposed to fraudulent activities and adversarial attacks, which
threaten their security and trustworthiness. In the last decade or so, the
research interest on adversarial machine learning has grown significantly,
revealing how learning applications could be severely impacted by effective
attacks. Although early results of adversarial machine learning indicate the
huge potential of the approach to specific domains such as image processing,
still there is a gap in both the research literature and practice regarding how
to generalize adversarial techniques in other domains and applications. Fraud
detection is a critical defense mechanism for data economy, as it is for other
applications as well, which poses several challenges for machine learning. In
this work, we describe how attacks against fraud detection systems differ from
other applications of adversarial machine learning, and propose a number of
interesting directions to bridge this gap.
- Abstract(参考訳): データ経済はデータ駆動システムに依存しており、複雑な機械学習アプリケーションはそれらによって推進される。
しかし残念なことに、機械学習モデルは不正行為や敵対的攻撃に晒され、セキュリティと信頼性を脅かす。
過去10年ほどで、機械学習に対する研究の関心が大幅に高まり、効果的な攻撃によって学習アプリケーションがどのように影響するかが明らかになった。
敵意機械学習の初期の結果は画像処理のような特定の領域へのアプローチの巨大な可能性を示しているが、他の領域やアプリケーションにおける敵意技術を一般化する方法に関する研究文献と実践にはギャップがある。
フラッド検出は、他のアプリケーションと同様に、データエコノミーにとって重要な防御メカニズムであり、機械学習にいくつかの課題をもたらす。
本稿では,不正検出システムに対する攻撃が,他の機械学習応用とどのように異なるかを説明し,このギャップを埋めるためのいくつかの興味深い方向を提案する。
関連論文リスト
- Trustworthy Machine Learning under Social and Adversarial Data Sources [14.454844284045642]
社会的および敵対的行動は、機械学習システムの振る舞いと性能に顕著な影響を及ぼす可能性がある。
データは戦略的な個人によって生成され、自己関心のデータ収集者によって収集され、敵の攻撃者によって汚染される可能性がある。
その結果、機械学習システムの出力は低下する可能性がある。
論文 参考訳(メタデータ) (2024-08-02T22:51:52Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
マシン・アンラーニング(MU)は、Safe AIを達成する可能性から、最近かなりの注目を集めている。
この調査は、機械学習における脅威、攻撃、防衛に関する広範な研究のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-03-20T15:40:18Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
本稿では,機械学習による侵入検知システムに対する敵ネットワークトラフィックの転送可能性について検討する。
本研究では,機械学習による侵入検知システムに対する対向的ネットワークトラフィックの転送可能性特性の影響を抑えるための防御機構として検出・削除を検討した。
論文 参考訳(メタデータ) (2021-12-22T17:54:54Z) - Adversarial Machine Learning for Cybersecurity and Computer Vision:
Current Developments and Challenges [2.132096006921048]
敵対的機械学習の研究は、機械学習技術の幅広い応用に対する重大な脅威に対処する。
まず、主に3つの機械学習テクニックに対する攻撃、すなわち中毒攻撃、回避攻撃、プライバシ攻撃について論じる。
サイバーセキュリティとコンピュータビジョンにおける敵のサンプルは根本的に異なることに気付きます。
論文 参考訳(メタデータ) (2021-06-30T03:05:58Z) - Adversarial Machine Learning in Text Analysis and Generation [1.116812194101501]
本論文では,テキスト解析と生成における対比機械学習の側面と研究動向について考察する。
本稿は,ganアルゴリズム,モデル,攻撃の種類,これらの攻撃に対する防御など,この分野の主要な研究動向を要約する。
論文 参考訳(メタデータ) (2021-01-14T04:37:52Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Adversarial Attacks on Machine Learning Systems for High-Frequency
Trading [55.30403936506338]
逆機械学習の観点から,アルゴリズム取引のバリュエーションモデルについて検討する。
攻撃コストを最小限に抑えるサイズ制約で、このドメインに特有の新たな攻撃を導入する。
本稿では、金融モデルのロバスト性について研究・評価するための分析ツールとして、これらの攻撃がどのように利用できるかについて論じる。
論文 参考訳(メタデータ) (2020-02-21T22:04:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。