論文の概要: Cain: Automatic Code Generation for Simultaneous Convolutional Kernels
on Focal-plane Sensor-processors
- arxiv url: http://arxiv.org/abs/2101.08715v1
- Date: Thu, 21 Jan 2021 16:48:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 12:57:29.535424
- Title: Cain: Automatic Code Generation for Simultaneous Convolutional Kernels
on Focal-plane Sensor-processors
- Title(参考訳): Cain: 葉面センサプロセッサ上の同時畳み込みカーネルの自動コード生成
- Authors: Edward Stow, Riku Murai, Sajad Saeedi, Paul H. J. Kelly
- Abstract要約: FPSP(Focal-plane Sensor-processors)は、低消費電力、高フレームレートの計算を可能にするカメラ技術である。
本稿では,複数の畳み込みカーネルからコードを生成する汎用FPSPであるS CAMP-5を対象とするコンパイラCainを紹介する。
例えば、MNISTの数値認識ニューラルネットワークの畳み込みカーネルを考えると、CainはS CAMP-5の他の利用可能なコンパイラと比較して、半分の長さのコードを生成する。
- 参考スコア(独自算出の注目度): 4.932130498861987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Focal-plane Sensor-processors (FPSPs) are a camera technology that enable low
power, high frame rate computation, making them suitable for edge computation.
Unfortunately, these devices' limited instruction sets and registers make
developing complex algorithms difficult. In this work, we present Cain - a
compiler that targets SCAMP-5, a general-purpose FPSP - which generates code
from multiple convolutional kernels. As an example, given the convolutional
kernels for an MNIST digit recognition neural network, Cain produces code that
is half as long, when compared to the other available compilers for SCAMP-5.
- Abstract(参考訳): FPSP(Focal-plane Sensor-processors)は、低消費電力、高フレームレートの計算を可能にするカメラ技術である。
残念ながら、これらの装置の限られた命令セットとレジスタは複雑なアルゴリズムの開発を困難にしている。
本研究では,複数の畳み込みカーネルからコードを生成する汎用fpspである scamp-5 をターゲットとするコンパイラ cain を提案する。
例えば、MNISTデジタル認識ニューラルネットワークの畳み込みカーネルを考えると、CainはSCAMP-5の他のコンパイラと比較して、半分の長さのコードを生成する。
- 全文 参考訳へのリンク
関連論文リスト
- LoopStack: a Lightweight Tensor Algebra Compiler Stack [61.04098601022665]
LoopStackはテンソル操作のためのドメイン固有のコンパイラスタックである。
最先端の機械学習フレームワークのパフォーマンスにマッチし、頻繁なマシンコードを生成する。
メモリフットプリントは非常に小さく、バイナリサイズは245KBで、30K行未満の効率的なコードによって、モバイルや組み込みデバイスでの使用に適している。
論文 参考訳(メタデータ) (2022-05-02T01:57:58Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Fast and High-Quality Image Denoising via Malleable Convolutions [72.18723834537494]
動的畳み込みの効率的な変種として、Malleable Convolution (MalleConv)を提案する。
以前の作品とは異なり、MalleConvは入力から空間的に変化するカーネルのより小さなセットを生成する。
また、MalleNetという造語であるMalleConvを用いて、効率的なdenoisingネットワークを構築した。
論文 参考訳(メタデータ) (2022-01-02T18:35:20Z) - HD-cos Networks: Efficient Neural Architectures for Secure Multi-Party
Computation [26.67099154998755]
マルチパーティ計算(MPC、Multi-party calculation)は、暗号化の分野の一つで、複数の非解決パーティが関数を安全に計算するためのプロトコルを実行する。
MPC設定下でニューラルネットワークのトレーニングと推論について検討する。
どちらの手法も、MPC設定下での強力な理論的モチベーションと効率的な計算を享受できることを示す。
論文 参考訳(メタデータ) (2021-10-28T21:15:11Z) - The CoRa Tensor Compiler: Compilation for Ragged Tensors with Minimal
Padding [14.635810503599759]
CoRaはテンソルコンパイラで、ユーザはタグ付きテンソル演算子の効率的なコードを簡単に生成できる。
我々は,ラッジテンソル上での各種演算子およびトランスモデルのエンコーダ層上でのCoRaの評価を行った。
論文 参考訳(メタデータ) (2021-10-19T19:39:04Z) - Fast Sketching of Polynomial Kernels of Polynomial Degree [61.83993156683605]
他のカーネルはしばしばテイラー級数展開を通じてカーネルによって近似されるので、カーネルは特に重要である。
スケッチの最近の技術は、カーネルの$q$という難解な程度に実行時間に依存することを減らしている。
我々は、この実行時間を大幅に改善する新しいスケッチを、先頭の注文項で$q$への依存を取り除くことで提供します。
論文 参考訳(メタデータ) (2021-08-21T02:14:55Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - VersaGNN: a Versatile accelerator for Graph neural networks [81.1667080640009]
我々は,超効率的なサイストリックアレイベースの多用途ハードウェアアクセラレータである textitVersaGNN を提案する。
textitVersaGNNは平均3712$times$ speedup with 1301.25$times$ energy reduction on CPU、35.4$times$ speedup with 17.66$times$ energy reduction on GPUを達成している。
論文 参考訳(メタデータ) (2021-05-04T04:10:48Z) - Memristive Stochastic Computing for Deep Learning Parameter Optimization [1.6344851071810071]
コンピューティング(sc)は、ビットストリームとデジタルロジックを用いた様々な演算処理の低コストかつ低消費電力化を可能にするコンピューティングパラダイムである。
40nmの補完金属酸化物半導体(CMOS)プロセスを使用することで、拡張可能なアーキテクチャは1.55mm$2$を占め、文字認識タスクのために訓練されている間、畳み込みニューラルネットワーク(CNN)のパラメータを最適化する際に約167$mu$Wを消費します。
論文 参考訳(メタデータ) (2021-03-11T07:10:32Z) - Source Code Classification for Energy Efficiency in Parallel Ultra
Low-Power Microcontrollers [5.4352987210173955]
本稿では,ソフトウェアツールチェーンの知性を向上し,最新のアーキテクチャを最大限に活用することを目的とする。
低電力の並列組込みアーキテクチャの場合、これは、例えばコア数の観点から構成を見つけることを意味し、最小限のエネルギー消費につながる。
実験によれば、ソースコード上で機械学習モデルを使用して最適なエネルギースケーリング構成を自動的に選択することは可能であり、エネルギー最小化のための自動システム構成のコンテキストで使用できる可能性がある。
論文 参考訳(メタデータ) (2020-12-12T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。