論文の概要: Snapshot Hyperspectral Imaging Based on Weighted High-order Singular
Value Regularization
- arxiv url: http://arxiv.org/abs/2101.08923v1
- Date: Fri, 22 Jan 2021 02:54:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 07:03:27.776077
- Title: Snapshot Hyperspectral Imaging Based on Weighted High-order Singular
Value Regularization
- Title(参考訳): 重み付き高次特異値正規化に基づくスナップショットハイパースペクトルイメージング
- Authors: Niankai Cheng, Hua Huang, Lei Zhang, and Lizhi Wang
- Abstract要約: スナップショットハイパースペクトルイメージングは、単一の2D測定で3Dハイパースペクトル画像(HSI)をキャプチャできます。
既存の復元方法は、3D HSIの構造的スペクトル空間的性質を完全に利用することはできない。
スナップショットハイパースペクトル画像の再構成精度を高めるために,高次テンソル最適化法を提案する。
- 参考スコア(独自算出の注目度): 22.5033027930853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Snapshot hyperspectral imaging can capture the 3D hyperspectral image (HSI)
with a single 2D measurement and has attracted increasing attention recently.
Recovering the underlying HSI from the compressive measurement is an ill-posed
problem and exploiting the image prior is essential for solving this ill-posed
problem. However, existing reconstruction methods always start from modeling
image prior with the 1D vector or 2D matrix and cannot fully exploit the
structurally spectral-spatial nature in 3D HSI, thus leading to a poor
fidelity. In this paper, we propose an effective high-order tensor optimization
based method to boost the reconstruction fidelity for snapshot hyperspectral
imaging. We first build high-order tensors by exploiting the spatial-spectral
correlation in HSI. Then, we propose a weight high-order singular value
regularization (WHOSVR) based low-rank tensor recovery model to characterize
the structure prior of HSI. By integrating the structure prior in WHOSVR with
the system imaging process, we develop an optimization framework for HSI
reconstruction, which is finally solved via the alternating minimization
algorithm. Extensive experiments implemented on two representative systems
demonstrate that our method outperforms state-of-the-art methods.
- Abstract(参考訳): スナップショットハイパースペクトル画像は、単一の2次元計測で3次元ハイパースペクトル画像(HSI)を撮影でき、近年注目を集めている。
圧縮測定から基礎となるHSIを復元することは不適切な問題であり、この不適切な問題の解決には画像の事前利用が不可欠である。
しかし、既存の再構成手法は常に1次元ベクトルや2次元行列に先立って画像のモデリングから始まり、3次元HSIの構造的スペクトル空間特性を完全に活用できないため、忠実度は低い。
本稿では,高次テンソル最適化を効果的に行うことにより,スナップショットハイパースペクトルイメージングの再構成精度を向上させる手法を提案する。
まず,hsiの空間スペクトル相関を利用して高次テンソルを構築する。
そこで本研究では,HSI以前の構造を特徴付けるために,WHOSVRに基づく高次特異値正規化モデルを提案する。
WHOSVRに先行する構造をシステムイメージングプロセスと統合することにより,HSI再構成のための最適化フレームワークを開発し,そのアルゴリズムを交互に最小化することで最終的に解決する。
2つの代表的なシステムで実施した広範囲な実験により,本手法が最先端手法よりも優れていることが証明された。
関連論文リスト
- USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting [45.246178004823534]
スパイクカメラは、0-1ビットストリームを40kHzで撮影する革新的なニューロモルフィックカメラとして、ますます3D再構成タスクに採用されている。
以前のスパイクベースの3D再構成アプローチでは、ケースケースのパイプラインを使うことが多い。
本稿では,スパイクに基づく画像再構成,ポーズ補正,ガウス的スプラッティングをエンドツーエンドのフレームワークに統一する,相乗的最適化フレームワーク textbfUSP-Gaussian を提案する。
論文 参考訳(メタデータ) (2024-11-15T14:15:16Z) - Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging [8.819370643243012]
Coded Aperture Snapshot Spectral Imaging (CASSI)は3次元マルチスペクトル画像(MSI)を撮影するための重要な技術である
現在の最先端の手法は、主にエンドツーエンドであり、高周波の詳細を再構築する際の制限に直面している。
本稿では,Snapshot Compressive Imagingのための自己教師型適応フレームワークにおいて,新しい1段階拡散確率モデルを提案する。
論文 参考訳(メタデータ) (2024-09-11T17:02:10Z) - Improving Robustness for Joint Optimization of Camera Poses and
Decomposed Low-Rank Tensorial Radiance Fields [26.4340697184666]
本稿では,分解された低ランクテンソルで表現されるカメラポーズとシーン形状を共同で洗練するアルゴリズムを提案する。
また,スムーズな2次元監視手法,ランダムスケールカーネルパラメータ,エッジ誘導損失マスクを提案する。
論文 参考訳(メタデータ) (2024-02-20T18:59:02Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
スナップショット分光画像再構成は、単発2次元圧縮計測から3次元空間スペクトル像を再構成することを目的としている。
我々は, 深部展開法に先立って劣化のないモデルを生成するため, 遅延拡散モデル(LDM)という生成モデルを導入する。
論文 参考訳(メタデータ) (2023-11-24T04:55:20Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
設計したハイパーカーネルを利用して,構造パラメータを直接生成することを提案する。
我々は1次元または3次元の畳み込みを伴う画素レベルの分類と画像レベルの分類を別々に行う3種類のネットワークを得る。
6つの公開データセットに関する一連の実験は、提案手法が最先端の結果を得ることを示した。
論文 参考訳(メタデータ) (2023-04-23T17:27:40Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors [8.890754092562918]
Coded Aperture snapshot Spectrum Imaging (CASSI)は、3次元ハイパースペクトル画像(HSI)を再構成する技術である。
本稿では,自然画像の空間と深部画像の先行値(Fama-P)に基づいて,高速な変動最小化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-12T03:29:14Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
HSI再構成のための高分解能デュアルドメイン学習ネットワーク(HDNet)を提案する。
一方、高効率な特徴融合によるHR空間スペクトルアテンションモジュールは、連続的かつ微細な画素レベルの特徴を提供する。
一方、HSI再構成のために周波数領域学習(FDL)を導入し、周波数領域の差を狭める。
論文 参考訳(メタデータ) (2022-03-04T06:37:45Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
本稿では,CNN の代わりに Transformer を用いて HSI の事前学習を行う新しい HSISR 手法を提案する。
具体的には、まず勾配アルゴリズムを用いてHSISRモデルを解き、次に展開ネットワークを用いて反復解過程をシミュレートする。
論文 参考訳(メタデータ) (2021-11-27T15:38:57Z) - Hyperspectral Pansharpening Based on Improved Deep Image Prior and
Residual Reconstruction [64.10636296274168]
高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能化
近年,深層畳み込みネットワーク(ConvNets)を用いたHSパンシャープ法が注目に値する結果を得た。
深層層の増加を抑えることで高レベルの特徴を学習することに焦点を当てた,新しいオーバーコンプリートネットワークHyperKiteを提案する。
論文 参考訳(メタデータ) (2021-07-06T14:11:03Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
ハイパースペクトル画像復元のための空間特性とスペクトル特性を組み合わせた統一パラダイムを提案する。
提案するパラダイムは,非局所空間デノゲーションと光計算の複雑さから,性能上の優位性を享受する。
HSI復調、圧縮再構成、塗装タスクの実験は、シミュレーションと実際のデータセットの両方で、その優位性を示している。
論文 参考訳(メタデータ) (2020-10-24T15:53:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。