論文の概要: A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors
- arxiv url: http://arxiv.org/abs/2206.05647v1
- Date: Sun, 12 Jun 2022 03:29:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-14 17:51:44.270894
- Title: A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors
- Title(参考訳): sparsity と deep image priors を用いた符号化開口スペクトルイメージングのための高速交互最小化アルゴリズム
- Authors: Qile Zhao, Xianhong Zhao, Xu Ma, Xudong Chen, Gonzalo R. Arce
- Abstract要約: Coded Aperture snapshot Spectrum Imaging (CASSI)は、3次元ハイパースペクトル画像(HSI)を再構成する技術である。
本稿では,自然画像の空間と深部画像の先行値(Fama-P)に基づいて,高速な変動最小化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 8.890754092562918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coded aperture snapshot spectral imaging (CASSI) is a technique used to
reconstruct three-dimensional hyperspectral images (HSIs) from one or several
two-dimensional projection measurements. However, fewer projection measurements
or more spectral channels leads to a severly ill-posed problem, in which case
regularization methods have to be applied. In order to significantly improve
the accuracy of reconstruction, this paper proposes a fast alternating
minimization algorithm based on the sparsity and deep image priors (Fama-SDIP)
of natural images. By integrating deep image prior (DIP) into the principle of
compressive sensing (CS) reconstruction, the proposed algorithm can achieve
state-of-the-art results without any training dataset. Extensive experiments
show that Fama-SDIP method significantly outperforms prevailing leading methods
on simulation and real HSI datasets.
- Abstract(参考訳): Coded Aperture snapshot Spectrum Imaging (CASSI)は、1つまたは複数の2次元投影計測から3次元ハイパースペクトル画像(HSI)を再構成する技術である。
しかし、プロジェクションの測定やスペクトルチャネルの増大は、厳密な不適切な問題につながり、正則化法を適用する必要がある。
そこで本研究では,自然画像の鮮度と深部画像の差分(Fama-SDIP)に基づく高速変動最小化アルゴリズムを提案する。
深部画像事前(DIP)を圧縮センシング(CS)再構成の原理に統合することにより、提案アルゴリズムはトレーニングデータセットを使わずに最先端の結果を得ることができる。
大規模な実験により,Fama-SDIP法はシミュレーションや実HSIデータセットにおいて先行する手法よりも優れていた。
関連論文リスト
- Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging [8.819370643243012]
Coded Aperture Snapshot Spectral Imaging (CASSI)は3次元マルチスペクトル画像(MSI)を撮影するための重要な技術である
現在の最先端の手法は、主にエンドツーエンドであり、高周波の詳細を再構築する際の制限に直面している。
本稿では,Snapshot Compressive Imagingのための自己教師型適応フレームワークにおいて,新しい1段階拡散確率モデルを提案する。
論文 参考訳(メタデータ) (2024-09-11T17:02:10Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
スナップショット分光画像再構成は、単発2次元圧縮計測から3次元空間スペクトル像を再構成することを目的としている。
我々は, 深部展開法に先立って劣化のないモデルを生成するため, 遅延拡散モデル(LDM)という生成モデルを導入する。
論文 参考訳(メタデータ) (2023-11-24T04:55:20Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
圧縮画像と物理マスクからパラメータを推定し,これらのパラメータを用いて各イテレーションを制御する,DAUF(Degradation-Aware Unfolding Framework)を提案する。
HST を DAUF に接続することにより,HSI 再構成のための変換器の深部展開法であるデグレーション・アウェア・アンフォールディング・ハーフシャッフル変換器 (DAUHST) を確立した。
論文 参考訳(メタデータ) (2022-05-20T11:37:44Z) - Deep Learning Adapted Acceleration for Limited-view Photoacoustic
Computed Tomography [1.8830359888767887]
光音響計算トモグラフィ(PACT)は、PA信号検出のための超音波トランスデューサアレイでターゲットを照らすために、焦点のない大面積の光を使用する。
限定ビュー問題は、幾何学的条件の制限により、PACTの低画質の画像を引き起こす可能性がある。
数学的変動モデルとディープラーニングを組み合わせたモデルベース手法を提案する。
論文 参考訳(メタデータ) (2021-11-08T02:05:58Z) - Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging [48.34565372026196]
本稿では,ポストリア(MAP)推定フレームワークに基づく新しいHSI再構成手法を提案する。
また,深層畳み込みニューラルネットワーク(DCNN)によるGSMモデルの局所平均の推定も提案する。
論文 参考訳(メタデータ) (2021-03-12T08:57:06Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z) - Snapshot Hyperspectral Imaging Based on Weighted High-order Singular
Value Regularization [22.5033027930853]
スナップショットハイパースペクトルイメージングは、単一の2D測定で3Dハイパースペクトル画像(HSI)をキャプチャできます。
既存の復元方法は、3D HSIの構造的スペクトル空間的性質を完全に利用することはできない。
スナップショットハイパースペクトル画像の再構成精度を高めるために,高次テンソル最適化法を提案する。
論文 参考訳(メタデータ) (2021-01-22T02:54:55Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。