A practical quantum encryption protocol with varying encryption
configurations
- URL: http://arxiv.org/abs/2101.09314v2
- Date: Sun, 13 Jun 2021 20:04:00 GMT
- Title: A practical quantum encryption protocol with varying encryption
configurations
- Authors: Junxu Li, Zixuan Hu and Sabre Kais
- Abstract summary: We propose a quantum encryption protocol that utilizes a quantum algorithm to create blocks oftext ciphers based on quantum states.
The main feature of our quantum encryption protocol is that the encryption configuration of each block is determined by the previous blocks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum communication is an important application that derives from the
burgeoning field of quantum information and quantum computation. Focusing on
secure communication, quantum cryptography has two major directions of
development, namely quantum key distribution and quantum encryption. In this
work we propose a quantum encryption protocol that utilizes a quantum algorithm
to create blocks of ciphertexts based on quantum states. The main feature of
our quantum encryption protocol is that the encryption configuration of each
block is determined by the previous blocks, such that additional security is
provided. We then demonstrate our method by an example model encrypting the
English alphabet, with numerical simulation results showing the large error
rate of a mock attack by a potential adversary. With possible future
improvements in mind, our quantum encryption protocol is a capable addition to
the toolbox of quantum cryptography.
Related papers
- Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Exact Homomorphic Encryption [0.0]
This article proposes a framework dubbed Exact Homomorphic Encryption, EHE, enabling exact computations on encrypted data without the need for pre-decryption.
Two fundamental traits of quantum gates, invertibility and the noncommutativity, establish the success of EHE.
arXiv Detail & Related papers (2024-01-17T07:48:52Z) - A Survey on Post-Quantum Cryptography: State-of-the-Art and Challenges [4.239503938472806]
We analyze the different types of post-quantum cryptography, quantum cryptography and quantum-resistant cryptography.
We conclude that due to quantum cryptography's present limitations it is not a viable solution like it is often presented to be.
arXiv Detail & Related papers (2023-12-16T12:17:44Z) - Designing Hash and Encryption Engines using Quantum Computing [2.348041867134616]
We explore quantum-based hash functions and encryption to fortify data security.
The integration of quantum and classical methods demonstrates potential in securing data in the era of quantum computing.
arXiv Detail & Related papers (2023-10-26T14:49:51Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Quantum Cryptography: Quantum Key Distribution, a Non-technical Approach [0.0]
Quantum mechanics provides means to create an inherently secure communication channel that is protected by the laws of physics.
This paper is a non-technical overview of quantum key distribution, a type of cryptography poised to exploit the laws of quantum mechanics directly.
arXiv Detail & Related papers (2022-11-09T15:30:23Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - A quantum encryption design featuring confusion, diffusion, and mode of
operation [0.0]
We propose a non-OTP quantum encryption scheme utilizing a quantum state creation process to encrypt messages.
As essentially a non-OTP quantum block cipher the method stands out against existing methods with the following features.
arXiv Detail & Related papers (2020-10-06T22:23:30Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.