S-BEV: Semantic Birds-Eye View Representation for Weather and Lighting
Invariant 3-DoF Localization
- URL: http://arxiv.org/abs/2101.09569v1
- Date: Sat, 23 Jan 2021 19:37:09 GMT
- Title: S-BEV: Semantic Birds-Eye View Representation for Weather and Lighting
Invariant 3-DoF Localization
- Authors: Mokshith Voodarla, Shubham Shrivastava, Sagar Manglani, Ankit Vora,
Siddharth Agarwal, Punarjay Chakravarty
- Abstract summary: We describe a light-weight, weather and lighting invariant, Semantic Bird's Eye View (S-BEV) signature for vision-based vehicle re-localization.
- Score: 5.668124846154997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a light-weight, weather and lighting invariant, Semantic Bird's
Eye View (S-BEV) signature for vision-based vehicle re-localization. A
topological map of S-BEV signatures is created during the first traversal of
the route, which are used for coarse localization in subsequent route
traversal. A fine-grained localizer is then trained to output the global 3-DoF
pose of the vehicle using its S-BEV and its coarse localization. We conduct
experiments on vKITTI2 virtual dataset and show the potential of the S-BEV to
be robust to weather and lighting. We also demonstrate results with 2 vehicles
on a 22 km long highway route in the Ford AV dataset.
Related papers
- VQ-Map: Bird's-Eye-View Map Layout Estimation in Tokenized Discrete Space via Vector Quantization [108.68014173017583]
Bird's-eye-view (BEV) map layout estimation requires an accurate and full understanding of the semantics for the environmental elements around the ego car.
We propose to utilize a generative model similar to the Vector Quantized-Variational AutoEncoder (VQ-VAE) to acquire prior knowledge for the high-level BEV semantics in the tokenized discrete space.
Thanks to the obtained BEV tokens accompanied with a codebook embedding encapsulating the semantics for different BEV elements in the groundtruth maps, we are able to directly align the sparse backbone image features with the obtained BEV tokens
arXiv Detail & Related papers (2024-11-03T16:09:47Z) - RoadBEV: Road Surface Reconstruction in Bird's Eye View [55.0558717607946]
Road surface conditions, especially geometry profiles, enormously affect driving performance of autonomous vehicles. Vision-based online road reconstruction promisingly captures road information in advance.
Bird's-Eye-View (BEV) perception provides immense potential to more reliable and accurate reconstruction.
This paper uniformly proposes two simple yet effective models for road elevation reconstruction in BEV named RoadBEV-mono and RoadBEV-stereo.
arXiv Detail & Related papers (2024-04-09T20:24:29Z) - DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception [104.87876441265593]
Camera-only Bird's Eye View (BEV) has demonstrated great potential in environment perception in a 3D space.
Unsupervised domain adaptive BEV, which effective learning from various unlabelled target data, is far under-explored.
We design DA-BEV, the first domain adaptive camera-only BEV framework that addresses domain adaptive BEV challenges by exploiting the complementary nature of image-view features and BEV features.
arXiv Detail & Related papers (2024-01-13T04:21:24Z) - U-BEV: Height-aware Bird's-Eye-View Segmentation and Neural Map-based Relocalization [81.76044207714637]
Relocalization is essential for intelligent vehicles when GPS reception is insufficient or sensor-based localization fails.
Recent advances in Bird's-Eye-View (BEV) segmentation allow for accurate estimation of local scene appearance.
This paper presents U-BEV, a U-Net inspired architecture that extends the current state-of-the-art by allowing the BEV to reason about the scene on multiple height layers before flattening the BEV features.
arXiv Detail & Related papers (2023-10-20T18:57:38Z) - Bird's-Eye-View Scene Graph for Vision-Language Navigation [85.72725920024578]
Vision-language navigation (VLN) entails an agent to navigate 3D environments following human instructions.
We present a BEV Scene Graph (BSG), which leverages multi-step BEV representations to encode scene layouts and geometric cues of indoor environment.
Based on BSG, the agent predicts a local BEV grid-level decision score and a global graph-level decision score, combined with a sub-view selection score on panoramic views.
arXiv Detail & Related papers (2023-08-09T07:48:20Z) - Leveraging BEV Representation for 360-degree Visual Place Recognition [14.497501941931759]
This paper investigates the advantages of using Bird's Eye View representation in 360-degree visual place recognition (VPR)
We propose a novel network architecture that utilizes the BEV representation in feature extraction, feature aggregation, and vision-LiDAR fusion.
The proposed BEV-based method is evaluated in ablation and comparative studies on two datasets.
arXiv Detail & Related papers (2023-05-23T08:29:42Z) - F2BEV: Bird's Eye View Generation from Surround-View Fisheye Camera
Images for Automated Driving [3.286961611175469]
We introduce a baseline, F2BEV, to generate BEV height maps and BEV semantic segmentation maps from fisheye images.
F2BEV consists of a distortion-aware spatial cross attention module for querying and consolidating spatial information.
We evaluate single-task and multi-task variants of F2BEV on our synthetic FB-SSEM dataset.
arXiv Detail & Related papers (2023-03-07T04:58:57Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
Bird's-Eye View (BEV) Perception has received increasing attention in recent years.
Data-driven simulation for autonomous driving has been a focal point of recent research.
We propose BEVGen, a conditional generative model that synthesizes realistic and spatially consistent surrounding images.
arXiv Detail & Related papers (2023-01-11T18:39:34Z) - BEV-SAN: Accurate BEV 3D Object Detection via Slice Attention Networks [28.024042528077125]
Bird's-Eye-View (BEV) 3D Object Detection is a crucial multi-view technique for autonomous driving systems.
We propose a novel method named BEV Slice Attention Network (BEV-SAN) for exploiting the intrinsic characteristics of different heights.
arXiv Detail & Related papers (2022-12-02T15:14:48Z) - BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera
Images via Spatiotemporal Transformers [39.253627257740085]
3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems.
We present a new framework termed BEVFormer, which learns unified BEV representations with transformers to support multiple autonomous driving perception tasks.
We show that BEVFormer remarkably improves the accuracy of velocity estimation and recall of objects under low visibility conditions.
arXiv Detail & Related papers (2022-03-31T17:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.