DenseNet for Breast Tumor Classification in Mammographic Images
- URL: http://arxiv.org/abs/2101.09637v1
- Date: Sun, 24 Jan 2021 03:30:59 GMT
- Title: DenseNet for Breast Tumor Classification in Mammographic Images
- Authors: Yuliana Jim\'enez Gaona, Mar\'ia Jos\'e Rodriguez-Alvarez, Hector
Espin\'o Morat\'o, Darwin Castillo Malla, and Vasudevan Lakshminarayanan
- Abstract summary: The aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images.
Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer is the most common invasive cancer in women, and the second
main cause of death. Breast cancer screening is an efficient method to detect
indeterminate breast lesions early. The common approaches of screening for
women are tomosynthesis and mammography images. However, the traditional manual
diagnosis requires an intense workload by pathologists, who are prone to
diagnostic errors. Thus, the aim of this study is to build a deep convolutional
neural network method for automatic detection, segmentation, and classification
of breast lesions in mammography images. Based on deep learning the Mask-CNN
(RoIAlign) method was developed to features selection and extraction; and the
classification was carried out by DenseNet architecture. Finally, the precision
and accuracy of the model is evaluated by cross validation matrix and AUC
curve. To summarize, the findings of this study may provide a helpful to
improve the diagnosis and efficiency in the automatic tumor localization
through the medical image classification.
Related papers
- Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
Breast cancer (BC) significantly contributes to cancer-related mortality in women.
accurately distinguishing malignant mass lesions remains challenging.
We propose a novel deep learning approach for BC screening utilizing mammography images.
arXiv Detail & Related papers (2023-10-30T10:22:14Z) - Mammograms Classification: A Review [0.0]
Mammogram images have been utilized in developing computer-aided diagnosis systems.
Researchers have proved that artificial intelligence with its emerging technologies can be used in the early detection of the disease.
arXiv Detail & Related papers (2022-03-04T19:22:35Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Predicting invasive ductal carcinoma using a Reinforcement Sample
Learning Strategy using Deep Learning [0.951828574518325]
Invasive ductal carcinoma is the second leading cause of death from cancer in women.
Due to the varying image clarity and structure of certain mammograms, it is difficult to observe major cancer characteristics.
This article presents a tumor classification algorithm that makes novel use of convolutional neural networks on breast mammogram images.
arXiv Detail & Related papers (2021-05-26T14:14:45Z) - Using Machine Learning to Automate Mammogram Images Analysis [12.19801103274363]
Early detection of breast cancer in X-ray mammography is believed to have effectively reduced the mortality rate.
A computer-aided automatic mammogram analysis system is proposed to process the mammogram images and automatically discriminate them as either normal or cancerous.
arXiv Detail & Related papers (2020-12-06T00:10:18Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
The final diagnosis of prostate cancer is based on the visual detection of Gleason patterns in prostate biopsy by pathologists.
Computer-aided-diagnosis systems allow to delineate and classify the cancerous patterns in the tissue.
The methodological core of this work is a U-Net convolutional neural network for image segmentation modified with residual blocks able to segment cancerous tissue.
arXiv Detail & Related papers (2020-05-22T19:49:10Z) - Understanding the robustness of deep neural network classifiers for
breast cancer screening [52.50078591615855]
Deep neural networks (DNNs) show promise in breast cancer screening, but their robustness to input perturbations must be better understood before they can be clinically implemented.
We measure the sensitivity of a radiologist-level screening mammogram image classifier to four commonly studied input perturbations.
We also perform a detailed analysis on the effects of low-pass filtering, and find that it degrades the visibility of clinically meaningful features.
arXiv Detail & Related papers (2020-03-23T01:26:36Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.