Computational Intelligence Approach to Improve the Classification
Accuracy of Brain Neoplasm in MRI Data
- URL: http://arxiv.org/abs/2101.09658v1
- Date: Sun, 24 Jan 2021 06:45:26 GMT
- Title: Computational Intelligence Approach to Improve the Classification
Accuracy of Brain Neoplasm in MRI Data
- Authors: Nilanjan Sinhababu, Monalisa Sarma and Debasis Samanta
- Abstract summary: This report presents two improvements for brain neoplasm detection in MRI data.
An advanced preprocessing technique is proposed to improve the area of interest in MRI data.
A hybrid technique using CNN for feature extraction followed by Support Vector Machine (SVM) for classification is also proposed.
- Score: 8.980876474818153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic detection of brain neoplasm in Magnetic Resonance Imaging (MRI) is
gaining importance in many medical diagnostic applications. This report
presents two improvements for brain neoplasm detection in MRI data: an advanced
preprocessing technique is proposed to improve the area of interest in MRI data
and a hybrid technique using Convolutional Neural Network (CNN) for feature
extraction followed by Support Vector Machine (SVM) for classification. The
learning algorithm for SVM is modified with the addition of cost function to
minimize false positive prediction addressing the errors in MRI data diagnosis.
The proposed approach can effectively detect the presence of neoplasm and also
predict whether it is cancerous (malignant) or non-cancerous (benign). To check
the effectiveness of the proposed preprocessing technique, it is inspected
visually and evaluated using training performance metrics. A comparison study
between the proposed classification technique and the existing techniques was
performed. The result showed that the proposed approach outperformed in terms
of accuracy and can handle errors in classification better than the existing
approaches.
Related papers
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Integrating Preprocessing Methods and Convolutional Neural Networks for
Effective Tumor Detection in Medical Imaging [0.0]
This research presents a machine-learning approach for tumor detection in medical images using convolutional neural networks (CNNs)
The study focuses on preprocessing techniques to enhance image features relevant to tumor detection, followed by developing and training a CNN model for accurate classification.
Experimental results demonstrate the effectiveness of the proposed approach in accurately detecting tumors in medical images.
arXiv Detail & Related papers (2024-02-25T23:49:05Z) - Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction [0.0]
Brain tumors are one of the deadliest forms of cancer with a mortality rate of over 80%.
In medical analysis, the manual annotation and segmentation of a brain tumor can be a complicated task.
This paper proposes a region of interest detection algorithm that is implemented during data preprocessing to locate salient features and remove extraneous MRI data.
A fully convolutional autoencoder with soft attention segments the different brain MRIs.
arXiv Detail & Related papers (2023-12-31T20:42:52Z) - A Novel Confidence Induced Class Activation Mapping for MRI Brain Tumor
Segmentation [19.52081109414247]
We propose the confidence-induced CAM (Cfd-CAM) for weakly-supervised semantic segmentation.
Cfd-CAM calculates the weight of each feature map by using the confidence of the target class.
Our experiments on two brain tumor datasets show that Cfd-CAM outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2023-06-08T18:01:08Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - An Improved Deep Convolutional Neural Network by Using Hybrid
Optimization Algorithms to Detect and Classify Brain Tumor Using Augmented
MRI Images [0.9990687944474739]
In this paper, an improvement in deep convolutional learning is ensured by adopting enhanced optimization algorithms.
Experimental studies are conducted to validate the performance of the suggested method on a total number of 2073 augmented MRI images.
The performance comparison shows that the DCNN-G-HHO is much more successful than existing methods, especially on a scoring accuracy of 97%.
arXiv Detail & Related papers (2022-06-08T14:29:06Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.