Two-step Machine Learning Approach for Channel Estimation with Mixed
Resolution RF Chains
- URL: http://arxiv.org/abs/2101.09705v1
- Date: Sun, 24 Jan 2021 12:33:54 GMT
- Title: Two-step Machine Learning Approach for Channel Estimation with Mixed
Resolution RF Chains
- Authors: Brenda Vilas Boas, Wolfgang Zirwas and Martin Haardt
- Abstract summary: We propose an efficient uplink channel estimator by applying machine learning (ML) algorithms.
In a first step a conditional generative adversarial network (cGAN) predicts the radio channels from a limited set of full resolution RF chains to the rest of the low resolution RF chain antenna elements.
A long-short term memory (LSTM) neural network extracts further phase information from the low resolution RF chain antenna elements.
- Score: 19.0581196881206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Massive MIMO is one of the main features of 5G mobile radio systems. However,
it often leads to high cost, size and power consumption. To overcome these
issues, the use of constrained radio frequency (RF) frontends has been
proposed, as well as novel precoders, e.g., a multi-antenna, greedy, iterative
and quantized precoding algorithm (MAGIQ). Nevertheless, the best performance
of MAGIQ assumes accurate channel knowledge per antenna element, for example,
from uplink sounding reference signals. In this context, we propose an
efficient uplink channel estimator by applying machine learning (ML)
algorithms. In a first step a conditional generative adversarial network (cGAN)
predicts the radio channels from a limited set of full resolution RF chains to
the rest of the low resolution RF chain antenna elements. A long-short term
memory (LSTM) neural network extracts further phase information from the low
resolution RF chain antenna elements. Our results indicate that our proposed
approach is competitive with traditional Unitary tensor-ESPRIT in scenarios
with various closely spaced multipath components (MPCs).
Related papers
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - DEFORM: A Practical, Universal Deep Beamforming System [4.450750414447688]
We introduce, design, and evaluate a set of universal receiver beamforming techniques.
Our approach and system DEFORM, a Deep Learning (DL) based RX beamforming achieves significant gain for multi antenna RF receivers.
arXiv Detail & Related papers (2022-03-18T03:52:18Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Waveform Learning for Next-Generation Wireless Communication Systems [16.26230847183709]
We propose a learning-based method for the joint design of a transmit and receive filter, the constellation geometry and associated bit labeling, as well as a neural network (NN)-based detector.
The method maximizes an achievable information rate, while simultaneously satisfying constraints on the adjacent channel leakage ratio (ACLR) and peak-to-average power ratio (PAPR)
arXiv Detail & Related papers (2021-09-02T14:51:16Z) - Deep Learning Based Hybrid Precoding in Dual-Band Communication Systems [34.03893373401685]
We propose a deep learning-based method that uses spatial and temporal information extracted from the sub-6GHz band to predict/track beams in the millimeter-wave (mmWave) band.
We consider a dual-band communication system operating in both the sub-6GHz and mmWave bands.
arXiv Detail & Related papers (2021-07-16T12:10:32Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.