DEFORM: A Practical, Universal Deep Beamforming System
- URL: http://arxiv.org/abs/2203.09727v1
- Date: Fri, 18 Mar 2022 03:52:18 GMT
- Title: DEFORM: A Practical, Universal Deep Beamforming System
- Authors: Hai N. Nguyen, Guevara Noubir
- Abstract summary: We introduce, design, and evaluate a set of universal receiver beamforming techniques.
Our approach and system DEFORM, a Deep Learning (DL) based RX beamforming achieves significant gain for multi antenna RF receivers.
- Score: 4.450750414447688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce, design, and evaluate a set of universal receiver beamforming
techniques. Our approach and system DEFORM, a Deep Learning (DL) based RX
beamforming achieves significant gain for multi antenna RF receivers while
being agnostic to the transmitted signal features (e.g., modulation or
bandwidth). It is well known that combining coherent RF signals from multiple
antennas results in a beamforming gain proportional to the number of receiving
elements. However in practice, this approach heavily relies on explicit channel
estimation techniques, which are link specific and require significant
communication overhead to be transmitted to the receiver. DEFORM addresses this
challenge by leveraging Convolutional Neural Network to estimate the channel
characteristics in particular the relative phase to antenna elements. It is
specifically designed to address the unique features of wireless signals
complex samples, such as the ambiguous $2\pi$ phase discontinuity and the high
sensitivity of the link Bit Error Rate. The channel prediction is subsequently
used in the Maximum Ratio Combining algorithm to achieve an optimal combination
of the received signals. While being trained on a fixed, basic RF settings, we
show that DEFORM DL model is universal, achieving up to 3 dB of SNR gain for a
two antenna receiver in extensive experiments demonstrating various settings of
modulations, bandwidths, and channels. The universality of DEFORM is
demonstrated through joint beamforming relaying of LoRa (Chirp Spread Spectrum
modulation) and ZigBee signals, achieving significant improvements to Packet
Loss/Delivery Rates relatively to conventional Amplify and Forward (LoRa PLR
reduced by 23 times and ZigBee PDR increased by 8 times).
Related papers
- Deep-Learning-Based Channel Estimation for Distributed MIMO with 1-bit Radio-Over-Fiber Fronthaul [11.370869277334227]
We consider the problem of pilot-aided, uplink channel estimation in a distributed massive multiple-input multiple-output (MIMO) architecture.
We adapt the deep-learning-based channel-estimation algorithm recently proposed by Nguyen et al.
We show that the proposed method outperforms significantly the Bussgang linear minimum mean-square error channel estimator.
arXiv Detail & Related papers (2024-06-17T08:38:29Z) - Random Orthogonalization for Federated Learning in Massive MIMO Systems [85.71432283670114]
We propose a novel communication design for federated learning (FL) in a massive multiple-input and multiple-output (MIMO) wireless system.
Key novelty of random orthogonalization comes from the tight coupling of FL and two unique characteristics of massive MIMO -- channel hardening and favorable propagation.
We extend this principle to the downlink communication phase and develop a simple but highly effective model broadcast method for FL.
arXiv Detail & Related papers (2022-10-18T14:17:10Z) - Learning OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
We propose a learning-based method to design OFDM-based waveforms that satisfy selected constraints while maximizing an achievable information rate.
We show that the end-to-end system is able to satisfy target PAPR and ACLR constraints and allows significant throughput gains.
arXiv Detail & Related papers (2021-10-21T08:58:59Z) - Waveform Learning for Next-Generation Wireless Communication Systems [16.26230847183709]
We propose a learning-based method for the joint design of a transmit and receive filter, the constellation geometry and associated bit labeling, as well as a neural network (NN)-based detector.
The method maximizes an achievable information rate, while simultaneously satisfying constraints on the adjacent channel leakage ratio (ACLR) and peak-to-average power ratio (PAPR)
arXiv Detail & Related papers (2021-09-02T14:51:16Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Two-step Machine Learning Approach for Channel Estimation with Mixed
Resolution RF Chains [19.0581196881206]
We propose an efficient uplink channel estimator by applying machine learning (ML) algorithms.
In a first step a conditional generative adversarial network (cGAN) predicts the radio channels from a limited set of full resolution RF chains to the rest of the low resolution RF chain antenna elements.
A long-short term memory (LSTM) neural network extracts further phase information from the low resolution RF chain antenna elements.
arXiv Detail & Related papers (2021-01-24T12:33:54Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z) - End-to-end Learning for OFDM: From Neural Receivers to Pilotless
Communication [12.325545487629297]
We explore the gains of end-to-end learning over a frequency- and time-selective fading channel.
With imperfect channel knowledge at the receiver, the shaping gains observed on AWGN channels vanish.
We identify two other sources of performance improvements.
arXiv Detail & Related papers (2020-09-11T07:33:00Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Deep Learning Optimized Sparse Antenna Activation for Reconfigurable
Intelligent Surface Assisted Communication [54.72880662623178]
Reconfigurable intelligent surface (RIS) usually works in passive mode.
Due to the cascaded channel structure and the lack of signal processing ability, it is difficult for RIS to obtain the individual channel state information.
In this paper, we add signal processing units for a few antennas at RIS to partially acquire the channels.
arXiv Detail & Related papers (2020-09-03T12:27:22Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.