論文の概要: Analytical Characterization and Design Space Exploration for
Optimization of CNNs
- arxiv url: http://arxiv.org/abs/2101.09808v2
- Date: Sat, 6 Mar 2021 00:40:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 11:52:53.380526
- Title: Analytical Characterization and Design Space Exploration for
Optimization of CNNs
- Title(参考訳): cnn最適化のための解析的キャラクタリゼーションと設計空間探索
- Authors: Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P.
Sadayappan
- Abstract要約: ループタイルやループ置換を含むループレベルの最適化は、データ移動を減らすための基本的な変換です。
本稿では,マルチコアCPU上でのCNNの最適ループレベル最適化構成を求めるための解析モデルを提案する。
- 参考スコア(独自算出の注目度): 10.15406080228806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Moving data through the memory hierarchy is a fundamental bottleneck that can
limit the performance of core algorithms of machine learning, such as
convolutional neural networks (CNNs). Loop-level optimization, including loop
tiling and loop permutation, are fundamental transformations to reduce data
movement. However, the search space for finding the best loop-level
optimization configuration is explosively large. This paper develops an
analytical modeling approach for finding the best loop-level optimization
configuration for CNNs on multi-core CPUs. Experimental evaluation shows that
this approach achieves comparable or better performance than state-of-the-art
libraries and auto-tuning based optimizers for CNNs.
- Abstract(参考訳): メモリ階層を通じたデータの移動は、畳み込みニューラルネットワーク(CNN)のような機械学習のコアアルゴリズムのパフォーマンスを制限する基本的なボトルネックである。
ループタイルやループ置換を含むループレベルの最適化は、データ移動を減らすための基本的な変換です。
しかし、最適なループレベルの最適化構成を見つけるための検索スペースは爆発的に大きい。
本稿では,マルチコアCPU上でのCNNの最適ループレベル最適化構成を求めるための解析モデルを提案する。
実験により,本手法は最新のライブラリや自動チューニングによるCNNの最適化よりも,同等あるいは優れた性能を実現することが示された。
関連論文リスト
- Towards Hyperparameter-Agnostic DNN Training via Dynamical System
Insights [4.513581513983453]
本稿では,ディープニューラルネットワーク(DNN),ECCO-DNNに特化した一階最適化手法を提案する。
本手法は, 最適変数軌道を動的システムとしてモデル化し, 軌道形状に基づいてステップサイズを適応的に選択する離散化アルゴリズムを開発する。
論文 参考訳(メタデータ) (2023-10-21T03:45:13Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
パフォーマンス埋め込みは、アプリケーション間でパフォーマンスチューニングの知識伝達を可能にする。
本研究では, 深層ニューラルネットワーク, 密度およびスパース線形代数合成, および数値風速予測ステンシルのケーススタディにおいて, この伝達チューニング手法を実証する。
論文 参考訳(メタデータ) (2023-03-14T15:51:35Z) - VeLO: Training Versatile Learned Optimizers by Scaling Up [67.90237498659397]
私たちは、ディープラーニングの成功の背後にある同じスケーリングアプローチを活用して、汎用性を学びます。
私たちは、パラメータの更新を取り込み出力する小さなニューラルネットワークであるディープラーニングのためのインジェクションをトレーニングします。
学習したメタトレーニングコード、関連するトレインテストデータ、およびvelo-code.ioのベースラインを備えた広範なベンチマークスイートをオープンソースとして公開しています。
論文 参考訳(メタデータ) (2022-11-17T18:39:07Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Moment Centralization based Gradient Descent Optimizers for
Convolutional Neural Networks [12.90962626557934]
コナールニューラルネットワーク(CNN)は多くのコンピュータビジョンアプリケーションに非常に魅力的な性能を示している。
本稿では,CNNのためのモーメント集中型SGDデータセットを提案する。
提案されたモーメント集中は本質的には汎用的であり、既存の適応運動量ベースのいずれかと統合することができる。
論文 参考訳(メタデータ) (2022-07-19T04:38:01Z) - Feasible Low-thrust Trajectory Identification via a Deep Neural Network
Classifier [1.5076964620370268]
本研究は、最適化プロセスに先立って、実現可能な低推力移動を正確に識別するディープニューラルネットワーク(DNN)を提案する。
DNN分類器の全体的な精度は97.9%であり、テストアルゴリズムの中では最高の性能である。
論文 参考訳(メタデータ) (2022-02-10T11:34:37Z) - I/O Lower Bounds for Auto-tuning of Convolutions in CNNs [2.571796445061562]
本研究では,複数のサブ計算からなる合成アルゴリズムの一般i/o下界理論を考案する。
我々は,データ再利用を十分に活用することにより,2つの主畳み込みアルゴリズムの近似i/o最適データフロー戦略を設計する。
実験結果から,自動チューニング方式によるデータフロー戦略は,cuDNNよりも平均約3.32倍の性能向上を達成できることがわかった。
論文 参考訳(メタデータ) (2020-12-31T15:46:01Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO最適化は、勾配推定、降下方向、ソリューション更新の3つの主要なステップを反復的に実行する。
我々は,ブラックボックス深層学習モデルによる説明文の評価や生成,効率的なオンラインセンサ管理など,ZO最適化の有望な応用を実証する。
論文 参考訳(メタデータ) (2020-06-11T06:50:35Z) - Automated Design Space Exploration for optimised Deployment of DNN on
Arm Cortex-A CPUs [13.628734116014819]
組み込みデバイスにおけるディープラーニングは、ディープニューラルネットワーク(DNN)のデプロイを最適化する多くの方法の開発を促している。
テストし、グローバルに最適化されたソリューションを得るには、アプローチの空間が大きすぎるため、クロスレベル最適化に関する研究が不足している。
我々は、Arm Cortex-A CPUプラットフォーム上での最先端DNNの一連の結果を示し、最大4倍の性能向上とメモリの2倍以上の削減を実現した。
論文 参考訳(メタデータ) (2020-06-09T11:00:06Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。