論文の概要: Make Optimization Once and for All with Fine-grained Guidance
- arxiv url: http://arxiv.org/abs/2503.11462v1
- Date: Fri, 14 Mar 2025 14:48:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:06:21.328493
- Title: Make Optimization Once and for All with Fine-grained Guidance
- Title(参考訳): きめ細かいガイダンスで最適化する
- Authors: Mingjia Shi, Ruihan Lin, Xuxi Chen, Yuhao Zhou, Zezhen Ding, Pingzhi Li, Tong Wang, Kai Wang, Zhangyang Wang, Jiheng Zhang, Tianlong Chen,
- Abstract要約: Learning to Optimize (L2O)は、統合ニューラルネットワークによる最適化効率を向上させる。
L2Oパラダイムは、例えば、リフィット、目に見えない解決策を反復的または直接的に生成するなど、大きな成果を達成する。
そこで本研究では,Diff-L2Oと呼ばれる学習最適化のための一般的なフレームワークについて検討した。
- 参考スコア(独自算出の注目度): 78.14885351827232
- License:
- Abstract: Learning to Optimize (L2O) enhances optimization efficiency with integrated neural networks. L2O paradigms achieve great outcomes, e.g., refitting optimizer, generating unseen solutions iteratively or directly. However, conventional L2O methods require intricate design and rely on specific optimization processes, limiting scalability and generalization. Our analyses explore general framework for learning optimization, called Diff-L2O, focusing on augmenting sampled solutions from a wider view rather than local updates in real optimization process only. Meanwhile, we give the related generalization bound, showing that the sample diversity of Diff-L2O brings better performance. This bound can be simply applied to other fields, discussing diversity, mean-variance, and different tasks. Diff-L2O's strong compatibility is empirically verified with only minute-level training, comparing with other hour-levels.
- Abstract(参考訳): Learning to Optimize (L2O)は、統合ニューラルネットワークによる最適化効率を向上させる。
L2Oパラダイムは、例えばオプティマイザのリフィット、目に見えないソリューションの反復的あるいは直接的な生成など、大きな成果を達成する。
しかし、従来のL2O法は複雑な設計を必要とし、スケーラビリティと一般化を制限した特定の最適化プロセスに依存している。
Diff-L2Oと呼ばれる学習最適化のための一般的なフレームワークについて検討し、実際の最適化プロセスにおける局所的な更新よりも、より広い視点からサンプルソリューションを拡張することに焦点を当てた。
一方、Diff-L2Oのサンプルの多様性がより良い性能をもたらすことを示す。
この境界は他の分野にも適用でき、多様性、平均分散、異なるタスクについて議論できる。
Diff-L2Oの強い互換性は、他の時間レベルと比較して、分レベルのトレーニングで実証的に検証されている。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
我々は,従来の最適化タスクから解を転送するアルゴリズムの能力を研究することのできる,システムの柔軟性のためのフレームワークを提案する。
NSGA-IIの柔軟性を2つの変種で検討し,1)2つのタスクの解を同時に最適化し,より適応性が高いと期待されるソース間の解を得る,2)活性化あるいは非活性化の異なる可能性に対応する能動的非アクティブなジェノタイプについて検討した。
その結果,標準NSGA-IIによる適応は目標目標への最適化に必要な評価回数を大幅に削減し,提案した変種は適応コストをさらに向上することがわかった。
論文 参考訳(メタデータ) (2023-05-31T12:07:50Z) - M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast
Self-Adaptation [145.7321032755538]
L2O(Learning to Optimize)は、複雑なタスクの最適化手順を著しく加速させるため、注目を集めている。
本稿では, アウト・オブ・ディストリビューションタスクへの高速なテスト時間自己適応を実現するL2Oをメタトレーニングすることで, このオープンな課題に対する潜在的な解決策を検討する。
論文 参考訳(メタデータ) (2023-02-28T19:23:20Z) - Learning to Generalize Provably in Learning to Optimize [185.71326306329678]
最適化学習(L2O)は、データ駆動アプローチによる最適化設計を自動化することで、人気が高まっている。
現在のL2O法は、少なくとも2回は一般化性能の低下に悩まされることが多い。
我々はこの2つのメトリクスを平坦性を考慮した正規化器としてL2Oフレームワークに組み込むことを提案する。
論文 参考訳(メタデータ) (2023-02-22T01:17:31Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z) - Learning to Optimize: A Primer and A Benchmark [94.29436694770953]
最適化への学習(L2O)は、機械学習を活用して最適化方法を開発する新しいアプローチです。
この記事では、継続的最適化のためのL2Oの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2021-03-23T20:46:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。