Annealed Stein Variational Gradient Descent
- URL: http://arxiv.org/abs/2101.09815v2
- Date: Mon, 8 Feb 2021 10:19:25 GMT
- Title: Annealed Stein Variational Gradient Descent
- Authors: Francesco D'Angelo, Vincent Fortuin
- Abstract summary: Stein variational gradient descent has gained attention in the approximate literature inference for its flexibility and accuracy.
We empirically explore the ability of this method to sample from multi-modal distributions and focus on two important issues: (i) the inability of the particles to escape from local modes and (ii) the inefficacy in reproducing the density of the different regions.
- Score: 4.020523898765405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Particle based optimization algorithms have recently been developed as
sampling methods that iteratively update a set of particles to approximate a
target distribution. In particular Stein variational gradient descent has
gained attention in the approximate inference literature for its flexibility
and accuracy. We empirically explore the ability of this method to sample from
multi-modal distributions and focus on two important issues: (i) the inability
of the particles to escape from local modes and (ii) the inefficacy in
reproducing the density of the different regions. We propose an annealing
schedule to solve these issues and show, through various experiments, how this
simple solution leads to significant improvements in mode coverage, without
invalidating any theoretical properties of the original algorithm.
Related papers
- Annealed Stein Variational Gradient Descent for Improved Uncertainty Estimation in Full-Waveform Inversion [25.714206592953545]
Variational Inference (VI) provides an approximate solution to the posterior distribution in the form of a parametric or non-parametric proposal distribution.
This study aims to improve the performance of VI within the context of Full-Waveform Inversion.
arXiv Detail & Related papers (2024-10-17T06:15:26Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
We present a new optimization-based method for sampling called mollified interaction energy descent (MIED)
MIED minimizes a new class of energies on probability measures called mollified interaction energies (MIEs)
We show experimentally that for unconstrained sampling problems our algorithm performs on par with existing particle-based algorithms like SVGD.
arXiv Detail & Related papers (2022-10-24T16:54:18Z) - Probability flow solution of the Fokker-Planck equation [10.484851004093919]
We introduce an alternative scheme based on integrating an ordinary differential equation that describes the flow of probability.
Unlike the dynamics, this equation deterministically pushes samples from the initial density onto samples from the solution at any later time.
Our approach is based on recent advances in score-based diffusion for generative modeling.
arXiv Detail & Related papers (2022-06-09T17:37:09Z) - A blob method method for inhomogeneous diffusion with applications to
multi-agent control and sampling [0.6562256987706128]
We develop a deterministic particle method for the weighted porous medium equation (WPME) and prove its convergence on bounded time intervals.
Our method has natural applications to multi-agent coverage algorithms and sampling probability measures.
arXiv Detail & Related papers (2022-02-25T19:49:05Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
A distributional optimization problem arises widely in machine learning and statistics.
We propose a novel particle-based algorithm, dubbed as variational transport, which approximately performs Wasserstein gradient descent.
We prove that when the objective function satisfies a functional version of the Polyak-Lojasiewicz (PL) (Polyak, 1963) and smoothness conditions, variational transport converges linearly.
arXiv Detail & Related papers (2020-12-21T18:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.