Branching Stein Variational Gradient Descent for sampling multimodal distributions
- URL: http://arxiv.org/abs/2506.13916v2
- Date: Thu, 17 Jul 2025 15:05:36 GMT
- Title: Branching Stein Variational Gradient Descent for sampling multimodal distributions
- Authors: Isaías Bañales, Arturo Jaramillo, Joshué Helí Ricalde-Guerrero,
- Abstract summary: We propose a novel particle-based variational inference method designed to work with multimodal distributions.<n>Our approach, referred to as Branched Stein Variational Gradient Descent (BSVGD), extends the classical Stein Variational Gradient Descent (SVGD) algorithm by incorporating a random branching mechanism that encourages the exploration of the state space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel particle-based variational inference method designed to work with multimodal distributions. Our approach, referred to as Branched Stein Variational Gradient Descent (BSVGD), extends the classical Stein Variational Gradient Descent (SVGD) algorithm by incorporating a random branching mechanism that encourages the exploration of the state space. In this work, a theoretical guarantee for the convergence in distribution is presented, as well as numerical experiments to validate the suitability of our algorithm. Performance comparisons between the BSVGD and the SVGD are presented using the Wasserstein distance between samples and the corresponding computational times.
Related papers
- Accelerated Stein Variational Gradient Flow [2.384873896423002]
Stein variational gradient descent (SVGD) is a kernel-based particle method for sampling from a target distribution.<n>We introduce ASVGD, an accelerated SVGD, based on an accelerated gradient flow in a metric space of probability densities.<n>We derive a momentum-based discrete-time sampling algorithm, which evolves a set of particles deterministically.
arXiv Detail & Related papers (2025-03-30T14:37:21Z) - A Stein Gradient Descent Approach for Doubly Intractable Distributions [5.63014864822787]
We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions.
The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.
arXiv Detail & Related papers (2024-10-28T13:42:27Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Accelerating Convergence of Stein Variational Gradient Descent via Deep
Unfolding [5.584060970507506]
Stein variational gradient descent (SVGD) is a prominent particle-based variational inference method used for sampling a target distribution.
In this paper, we propose novel trainable algorithms that incorporate a deep-learning technique called deep unfolding,into SVGD.
arXiv Detail & Related papers (2024-02-23T06:24:57Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Augmented Message Passing Stein Variational Gradient Descent [3.5788754401889014]
We study the isotropy property of finite particles during the convergence process.
All particles tend to cluster around the particle center within a certain range.
Our algorithm achieves satisfactory accuracy and overcomes the variance collapse problem in various benchmark problems.
arXiv Detail & Related papers (2023-05-18T01:13:04Z) - Learning Equivariant Energy Based Models with Equivariant Stein
Variational Gradient Descent [80.73580820014242]
We focus on the problem of efficient sampling and learning of probability densities by incorporating symmetries in probabilistic models.
We first introduce Equivariant Stein Variational Gradient Descent algorithm -- an equivariant sampling method based on Stein's identity for sampling from densities with symmetries.
We propose new ways of improving and scaling up training of energy based models.
arXiv Detail & Related papers (2021-06-15T01:35:17Z) - Stein Variational Inference for Discrete Distributions [70.19352762933259]
We propose a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions.
Our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo.
We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN)
In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions.
arXiv Detail & Related papers (2020-03-01T22:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.