論文の概要: Beyond Expertise and Roles: A Framework to Characterize the Stakeholders
of Interpretable Machine Learning and their Needs
- arxiv url: http://arxiv.org/abs/2101.09824v1
- Date: Sun, 24 Jan 2021 23:21:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 09:07:33.274960
- Title: Beyond Expertise and Roles: A Framework to Characterize the Stakeholders
of Interpretable Machine Learning and their Needs
- Title(参考訳): 専門家と役割を超えて:解釈可能な機械学習のステークホルダーとそのニーズを特徴づけるフレームワーク
- Authors: Harini Suresh, Steven R. Gomez, Kevin K. Nam, Arvind Satyanarayan
- Abstract要約: 多様な利害関係者がブラックボックス自動化システムを尋問し、理解しやすく、関連性があり、有用である情報を見つけることが重要である。
本稿では、より粒度の細かいフレームワークを優先して、解釈可能性ステークホルダーの専門知識と役割に基づく分類を行う。
我々は、ステークホルダーの形式的、道具的、個人的知識と、それが機械学習、データドメイン、そして一般的なミリューの文脈でどのように現れるのかを特徴付けます。
- 参考スコア(独自算出の注目度): 6.381046244250263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To ensure accountability and mitigate harm, it is critical that diverse
stakeholders can interrogate black-box automated systems and find information
that is understandable, relevant, and useful to them. In this paper, we eschew
prior expertise- and role-based categorizations of interpretability
stakeholders in favor of a more granular framework that decouples stakeholders'
knowledge from their interpretability needs. We characterize stakeholders by
their formal, instrumental, and personal knowledge and how it manifests in the
contexts of machine learning, the data domain, and the general milieu. We
additionally distill a hierarchical typology of stakeholder needs that
distinguishes higher-level domain goals from lower-level interpretability
tasks. In assessing the descriptive, evaluative, and generative powers of our
framework, we find our more nuanced treatment of stakeholders reveals gaps and
opportunities in the interpretability literature, adds precision to the design
and comparison of user studies, and facilitates a more reflexive approach to
conducting this research.
- Abstract(参考訳): 説明責任の確保と害を軽減するため、多様な利害関係者がブラックボックスの自動化システムを疑問視し、理解しやすく、関連性があり、有用である情報を見つけることが重要である。
本稿では,ステークホルダの知識を解釈ニーズから切り離す,より粒度の細かい枠組みを優先して,事前の専門知識と役割に基づく理解可能性ステークホルダーの分類を緩和する。
我々は、ステークホルダーの形式的、道具的、個人的知識と、それが機械学習、データドメイン、そして一般的なミリューの文脈でどのように現れるのかを特徴付けます。
さらに、より高いレベルのドメイン目標と低いレベルの解釈可能性タスクを区別するステークホルダーのニーズの階層的なタイポロジーを抽出します。
フレームワークの記述的、評価的、および生成的能力を評価する際に、ステークホルダのよりニュアンスのある扱いは、解釈可能な文献のギャップと機会を明らかにし、ユーザー研究の設計と比較に精度を加え、この研究を実行するためのよりリフレクティブなアプローチを促進します。
関連論文リスト
- Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
我々は、価値間の近さと緊張を可視化する価値に基づくアセスメントフレームワークを開発する。
我々は、幅広い利害関係者に評価と検討のプロセスを開放しつつ、それらの運用方法に関するガイドラインを提示する。
論文 参考訳(メタデータ) (2022-05-09T19:28:32Z) - A Survey of Machine Narrative Reading Comprehension Assessments [20.33600275496604]
評価課題の主な類似点と相違点を抽出する類型論を提案する。
本稿では,新しいタスクデザインにおけるタイポロジーの影響と,物語読解の課題について論じる。
論文 参考訳(メタデータ) (2022-04-30T16:06:23Z) - Automated Speech Scoring System Under The Lens: Evaluating and
interpreting the linguistic cues for language proficiency [26.70127591966917]
従来の機械学習モデルを用いて、音声認識タスクを分類と回帰問題の両方として定式化する。
まず,5つのカテゴリー(頻度,発音,内容,文法,語彙,音響)で言語学の特徴を抽出し,応答を学習する。
比較すると,回帰に基づくモデルでは,分類法と同等かそれ以上の性能があることがわかった。
論文 参考訳(メタデータ) (2021-11-30T06:28:58Z) - Attributing Fair Decisions with Attention Interventions [28.968122909973975]
我々は、属性フレームワークとして活用できる注意ベースのモデルを設計する。
注意介入と注意重み操作によって、モデルの性能と公平性の両方に責任を負う特徴を特定することができる。
次に、後処理のバイアス軽減戦略を設計し、ベースラインのスイートと比較します。
論文 参考訳(メタデータ) (2021-09-08T22:28:44Z) - Desiderata for Representation Learning: A Causal Perspective [104.3711759578494]
我々は表現学習の因果的視点を採り、非純粋性と効率性(教師なし表現学習)と非教師なし表現学習(教師なし表現学習)を定式化する。
これは、関心のデシダータを満たす程度を計算可能なメトリクスで評価し、単一の観測データセットから不純物や不整合表現を学習する。
論文 参考訳(メタデータ) (2021-09-08T17:33:54Z) - Fair Representation Learning using Interpolation Enabled Disentanglement [9.043741281011304]
a) 下流タスクに対する学習された表現の有用性を確保しつつ、公平な不整合表現を同時に学べるか、(b) 提案手法が公正かつ正確であるかどうかに関する理論的知見を提供する。
前者に対応するために,補間可能外乱を用いた公正表現学習法FRIEDを提案する。
論文 参考訳(メタデータ) (2021-07-31T17:32:12Z) - Is Sparse Attention more Interpretable? [52.85910570651047]
我々は,空間が注意力を説明可能性ツールとして活用する能力にどのように影響するかを検討する。
入力とインデックス付き中間表現の間には弱い関係しか存在しません。
この設定では、疎度を誘導することで、モデルの振る舞いを理解するためのツールとして注意が使用できることが、より確実になる可能性があることを観察する。
論文 参考訳(メタデータ) (2021-06-02T11:42:56Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - What Do We Want From Explainable Artificial Intelligence (XAI)? -- A
Stakeholder Perspective on XAI and a Conceptual Model Guiding
Interdisciplinary XAI Research [0.8707090176854576]
説明可能性アプローチの主な目的は、人工システムに関する特定の関心、目標、期待、ニーズ、および要求を満たすことです。
ステークホルダーのデシデラタを満たすという目標を達成するための説明可能性アプローチがどうあるべきかは、しばしば不明である。
論文 参考訳(メタデータ) (2021-02-15T19:54:33Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
データ管理研究は、データとアルゴリズムの公平性に関連するトピックに対する存在感と関心が高まっている。
我々は,その正しさ,公平性,効率性,スケーラビリティ,安定性よりも,13の公正な分類アプローチと追加の変種を幅広く分析している。
我々の分析は、異なるメトリクスとハイレベルなアプローチ特性がパフォーマンスの異なる側面に与える影響に関する新しい洞察を強調します。
論文 参考訳(メタデータ) (2021-01-18T22:55:40Z) - Reasoning over Vision and Language: Exploring the Benefits of
Supplemental Knowledge [59.87823082513752]
本稿では,汎用知識基盤(KB)から視覚言語変換器への知識の注入について検討する。
我々は複数のタスクやベンチマークに対する様々なkbの関連性を実証的に研究する。
この技術はモデルに依存しず、最小限の計算オーバーヘッドで任意の視覚言語変換器の適用可能性を拡張することができる。
論文 参考訳(メタデータ) (2021-01-15T08:37:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。