論文の概要: An Overview of Large Language Models for Statisticians
- arxiv url: http://arxiv.org/abs/2502.17814v1
- Date: Tue, 25 Feb 2025 03:40:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:24:00.069068
- Title: An Overview of Large Language Models for Statisticians
- Title(参考訳): 統計学者のための大規模言語モデルの概要
- Authors: Wenlong Ji, Weizhe Yuan, Emily Getzen, Kyunghyun Cho, Michael I. Jordan, Song Mei, Jason E Weston, Weijie J. Su, Jing Xu, Linjun Zhang,
- Abstract要約: 大規模言語モデル(LLM)は人工知能(AI)の変換ツールとして登場した。
本稿では, 統計学者がLLMの開発に重要な貢献できる可能性について考察する。
我々は不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
- 参考スコア(独自算出の注目度): 109.38601458831545
- License:
- Abstract: Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI), exhibiting remarkable capabilities across diverse tasks such as text generation, reasoning, and decision-making. While their success has primarily been driven by advances in computational power and deep learning architectures, emerging problems -- in areas such as uncertainty quantification, decision-making, causal inference, and distribution shift -- require a deeper engagement with the field of statistics. This paper explores potential areas where statisticians can make important contributions to the development of LLMs, particularly those that aim to engender trustworthiness and transparency for human users. Thus, we focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation. We also consider possible roles for LLMs in statistical analysis. By bridging AI and statistics, we aim to foster a deeper collaboration that advances both the theoretical foundations and practical applications of LLMs, ultimately shaping their role in addressing complex societal challenges.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人工知能(AI)における変換ツールとして登場し、テキスト生成、推論、意思決定といった様々なタスクにまたがる顕著な能力を示す。
彼らの成功は、主に計算能力とディープラーニングアーキテクチャの進歩によって推進されているが、不確実性定量化、意思決定、因果推論、分散シフトといった分野における新しい問題は、統計学の分野とのより深い関わりを必要としている。
本稿では、統計学者がLLMの開発に重要な貢献をすることができる可能性、特に人間の信頼性と透明性を高めることを目的とした分野について考察する。
したがって、不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
統計解析におけるLLMの役割についても検討する。
AIと統計をブリッジすることで、私たちはLLMの理論的基礎と実践的応用の両方を前進させ、最終的には複雑な社会的課題に対処する彼らの役割を形作る、より深いコラボレーションを促進することを目指しています。
関連論文リスト
- A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
大規模言語モデル(LLM)は、様々な言語関連タスクで顕著なパフォーマンスを示す。
LLMは、そのコア機能を超えて、創発的な能力を示す。
本稿では,これらの機能を実現する基盤となるコンポーネント,スケーリング機構,アーキテクチャ戦略について検討する。
論文 参考訳(メタデータ) (2025-01-03T21:04:49Z) - Explainable and Interpretable Multimodal Large Language Models: A Comprehensive Survey [46.617998833238126]
大規模言語モデル(LLM)とコンピュータビジョン(CV)システムは、自然言語理解と視覚処理の進歩を促進する。
これらの技術の収束がマルチモーダルAIの台頭を触媒し、テキスト、ビジョン、オーディオ、ビデオモダリティにまたがるよりリッチでクロスモーダルな理解を可能にした。
マルチモーダル大規模言語モデル(MLLM)は、画像テキスト生成、視覚的質問応答、相互モーダル検索といったタスクにおいて印象的な機能を示す強力なフレームワークとして登場した。
これらの進歩にもかかわらず、MLLMの複雑さと規模は解釈可能性と説明可能性において大きな課題をもたらし、確立に不可欠である。
論文 参考訳(メタデータ) (2024-12-03T02:54:31Z) - Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
我々は、より実用的な方法でエンパワーメントを計算するアルゴリズムであるLatent-Predictive Empowerment(LPE)を提案する。
LPEは、スキルと国家間の相互情報の原則的な置き換えである目的を最大化することで、大きなスキルセットを学習する。
論文 参考訳(メタデータ) (2024-10-15T00:41:18Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - Machine-assisted quantitizing designs: augmenting humanities and social sciences with artificial intelligence [0.0]
大規模言語モデル(LLM)は、人文科学や社会科学におけるデータ分析をスケールアップする前例のない機会であることが示された。
設計原則を定量化し、変換し、言語学から特徴分析し、人間の専門知識と機械のスケーラビリティを透過的に統合する混合手法を構築します。
このアプローチは、1ダース以上のLDM支援ケーススタディで議論され、9つの多様な言語、複数の規律、タスクをカバーしている。
論文 参考訳(メタデータ) (2023-09-24T14:21:50Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Large Process Models: A Vision for Business Process Management in the Age of Generative AI [4.1636123511446055]
大規模プロセスモデル(LPM)は、大規模言語モデルの相関力と、知識ベースシステムの分析精度と信頼性と、自動推論アプローチを組み合わせる。
LPMは、企業に対して、コンテキスト固有の(適切な)プロセスやその他のビジネスモデル、分析的なディープダイブ、改善のレコメンデーションを受け取ることを可能にする。
論文 参考訳(メタデータ) (2023-09-02T10:32:53Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。