Weakly Supervised Thoracic Disease Localization via Disease Masks
- URL: http://arxiv.org/abs/2101.09915v1
- Date: Mon, 25 Jan 2021 06:52:57 GMT
- Title: Weakly Supervised Thoracic Disease Localization via Disease Masks
- Authors: Hyun-Woo Kim, Hong-Gyu Jung, Seong-Whan Lee
- Abstract summary: weakly supervised localization methods have been proposed that use only image-level annotation.
We propose a spatial attention method using disease masks that describe the areas where diseases mainly occur.
We show that the proposed method results in superior localization performances compared to state-of-the-art methods.
- Score: 29.065791290544983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enable a deep learning-based system to be used in the medical domain as a
computer-aided diagnosis system, it is essential to not only classify diseases
but also present the locations of the diseases. However, collecting
instance-level annotations for various thoracic diseases is expensive.
Therefore, weakly supervised localization methods have been proposed that use
only image-level annotation. While the previous methods presented the disease
location as the most discriminative part for classification, this causes a deep
network to localize wrong areas for indistinguishable X-ray images. To solve
this issue, we propose a spatial attention method using disease masks that
describe the areas where diseases mainly occur. We then apply the spatial
attention to find the precise disease area by highlighting the highest
probability of disease occurrence. Meanwhile, the various sizes, rotations and
noise in chest X-ray images make generating the disease masks challenging. To
reduce the variation among images, we employ an alignment module to transform
an input X-ray image into a generalized image. Through extensive experiments on
the NIH-Chest X-ray dataset with eight kinds of diseases, we show that the
proposed method results in superior localization performances compared to
state-of-the-art methods.
Related papers
- Hierarchical Salient Patch Identification for Interpretable Fundus Disease Localization [4.714335699701277]
We propose a weakly supervised interpretable fundus disease localization method called hierarchical salient patch identification (HSPI)
HSPI can achieve interpretable disease localization using only image-level labels and a neural network classifier (NNC)
We conduct disease localization experiments on fundus image datasets and achieve the best performance on multiple evaluation metrics compared to previous interpretable attribution methods.
arXiv Detail & Related papers (2024-05-23T09:07:21Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
Locating lesions is important in the computer-aided diagnosis of X-ray images.
General weakly-supervised methods have failed to consider the characteristics of X-ray images.
We propose the Cross-chest Graph (CCG), which improves the performance of automatic lesion detection.
arXiv Detail & Related papers (2021-01-22T08:24:04Z) - Contralaterally Enhanced Networks for Thoracic Disease Detection [120.60868136876599]
There exist many similar structures in the left and right parts of the chest, such as ribs, lung fields and bronchial tubes.
This kind of similarities can be used to identify diseases in chest X-rays, according to the experience of broad-certificated radiologists.
We propose a deep end-to-end module to exploit the contralateral context information for enhancing feature representations of disease proposals.
arXiv Detail & Related papers (2020-10-09T10:15:26Z) - Explainable Disease Classification via weakly-supervised segmentation [4.154485485415009]
Deep learning approaches to Computer Aided Diagnosis (CAD) typically pose the problem as an image classification (Normal or Abnormal) problem.
This paper examines this problem and proposes an approach which mimics the clinical practice of looking for evidence prior to diagnosis.
The proposed solution is then adapted to Breast Cancer detection from mammographic images.
arXiv Detail & Related papers (2020-08-24T09:00:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Thoracic Disease Identification and Localization using Distance Learning
and Region Verification [15.851040584898463]
We propose an alternative approach that learns discriminative features among triplets of images and cyclically trains on region features to verify whether attentive regions contain information indicative of a disease.
Our model can achieve state-of-the-art classification performance on the challenging ChestX-ray14 dataset, and our ablation studies indicate that both distance learning and region verification contribute to overall classification performance.
arXiv Detail & Related papers (2020-06-07T16:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.