論文の概要: Game-Theoretic and Machine Learning-based Approaches for Defensive
Deception: A Survey
- arxiv url: http://arxiv.org/abs/2101.10121v1
- Date: Thu, 21 Jan 2021 21:55:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 09:53:00.883787
- Title: Game-Theoretic and Machine Learning-based Approaches for Defensive
Deception: A Survey
- Title(参考訳): ゲーム理論と機械学習によるディフェンシブ・ディセプションのアプローチ:調査
- Authors: Mu Zhu, Ahmed H. Anwar, Zelin Wan, Jin-Hee Cho, Charles Kamhoua, and
Munindar P. Singh
- Abstract要約: 本稿では,ゲーム理論と機械学習を中心とした防御的デセプション研究に焦点を当てる。
これは、現在の防衛詐欺研究の大きなギャップに取り組むためにいくつかの研究方向の概要で閉じます。
- 参考スコア(独自算出の注目度): 13.624968742674143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Defensive deception is a promising approach for cyberdefense. Although
defensive deception is increasingly popular in the research community, there
has not been a systematic investigation of its key components, the underlying
principles, and its tradeoffs in various problem settings. This survey paper
focuses on defensive deception research centered on game theory and machine
learning, since these are prominent families of artificial intelligence
approaches that are widely employed in defensive deception. This paper brings
forth insights, lessons, and limitations from prior work. It closes with an
outline of some research directions to tackle major gaps in current defensive
deception research.
- Abstract(参考訳): 防衛詐欺はサイバー防衛にとって有望なアプローチだ。
ディフェンシブ・デセプションは研究コミュニティで人気が高まっているが、キーコンポーネント、基本原理、様々な問題設定におけるトレードオフに関する体系的な調査は行われていない。
本研究は,ゲーム理論と機械学習を中心とした防御的デセプション研究に焦点を当て,防御的デセプションに広く用いられている人工知能アプローチの著名なファミリーである。
本稿では,先行作業から洞察,教訓,限界を導き出す。
現在の防衛詐欺研究の大きなギャップに対処するためのいくつかの研究の方向性の概要をまとめて締めくくっている。
- 全文 参考訳へのリンク
関連論文リスト
- Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - A Review of Adversarial Attack and Defense for Classification Methods [78.50824774203495]
本稿では,敵対的事例の生成と保護に焦点をあてる。
この論文は、多くの統計学者が、この重要かつエキサイティングな分野において、敵の事例を生成・防御することを奨励するものである。
論文 参考訳(メタデータ) (2021-11-18T22:13:43Z) - An Overview of Backdoor Attacks Against Deep Neural Networks and
Possible Defences [33.415612094924654]
本研究の目的は,これまでに提案された攻撃・防衛の多種多様さを概観することである。
バックドア攻撃では、攻撃者はトレーニングデータを破損し、テスト時に誤動作を誘発する。
テストタイムエラーは、適切に作成された入力サンプルに対応するトリガーイベントの存在下でのみ起動される。
論文 参考訳(メタデータ) (2021-11-16T13:06:31Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z) - Threat of Adversarial Attacks on Deep Learning in Computer Vision:
Survey II [86.51135909513047]
ディープラーニングは、予測を操作できる敵攻撃に対して脆弱である。
本稿では,ディープラーニングに対する敵対的攻撃におけるコンピュータビジョンコミュニティの貢献を概観する。
この領域では、非専門家に技術的な用語の定義を提供する。
論文 参考訳(メタデータ) (2021-08-01T08:54:47Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Information Leakage Games: Exploring Information as a Utility Function [9.137823172310194]
情報漏洩の状況下で攻撃者および防御者の戦略を形式化するゲーム理論の枠組みを提案する。
我々のゲームにおける重要な新規性は、それらのユーティリティが情報漏洩によって与えられることだ。
論文 参考訳(メタデータ) (2020-12-22T14:51:30Z) - TROJANZOO: Everything you ever wanted to know about neural backdoors
(but were afraid to ask) [28.785693760449604]
TROJANZOOは、ニューラルバックドア攻撃/防御を評価するための最初のオープンソースプラットフォームです。
12の代表的な攻撃、15の最先端の防御、6の攻撃パフォーマンスメトリクス、10の防衛ユーティリティメトリクス、および攻撃防御相互作用の分析のための豊富なツールがあります。
既存の攻撃/防御の体系的な調査を行い、多くの興味深い発見をもたらします。
論文 参考訳(メタデータ) (2020-12-16T22:37:27Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。