論文の概要: Multi-task Learning Approach for Automatic Modulation and Wireless
Signal Classification
- arxiv url: http://arxiv.org/abs/2101.10254v2
- Date: Sat, 20 Feb 2021 21:14:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-14 18:57:29.914387
- Title: Multi-task Learning Approach for Automatic Modulation and Wireless
Signal Classification
- Title(参考訳): 自動変調と無線信号分類のためのマルチタスク学習手法
- Authors: Anu Jagannath, Jithin Jagannath
- Abstract要約: 深層ニューラルネットワークの可能性をマルチタスク学習(MTL)フレームワークと組み合わせて活用し、変調と信号分類のタスクを同時に学習します。
我々は、レーダーと複数のラベルとの通信信号からなる唯一の既知のオープン異種無線信号データセットをリリースします。
- 参考スコア(独自算出の注目度): 1.827510863075184
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Wireless signal recognition is becoming increasingly more significant for
spectrum monitoring, spectrum management, and secure communications.
Consequently, it will become a key enabler with the emerging fifth-generation
(5G) and beyond 5G communications, Internet of Things networks, among others.
State-of-the-art studies in wireless signal recognition have only focused on a
single task which in many cases is insufficient information for a system to act
on. In this work, for the first time in the wireless communication domain, we
exploit the potential of deep neural networks in conjunction with multi-task
learning (MTL) framework to simultaneously learn modulation and signal
classification tasks. The proposed MTL architecture benefits from the mutual
relation between the two tasks in improving the classification accuracy as well
as the learning efficiency with a lightweight neural network model.
Additionally, we consider the problem of heterogeneous wireless signals such as
radar and communication signals in the electromagnetic spectrum. Accordingly,
we have shown how the proposed MTL model outperforms several state-of-the-art
single-task learning classifiers while maintaining a lighter architecture and
performing two signal characterization tasks simultaneously. Finally, we also
release the only known open heterogeneous wireless signals dataset that
comprises of radar and communication signals with multiple labels.
- Abstract(参考訳): 無線信号認識は、スペクトルモニタリング、スペクトル管理、安全な通信においてますます重要になりつつある。
その結果、新たな第5世代(5G)や、5G通信、モノのインターネットネットワークなど、重要な実現要因となるでしょう。
無線信号認識における最先端の研究は、多くの場合、システムが動作するための不十分な情報である単一のタスクにのみ焦点を合わせています。
本研究では、無線通信分野で初めて、マルチタスク学習(MTL)フレームワークと連動した深層ニューラルネットワークの可能性を利用して、変調と信号分類のタスクを同時に学習する。
提案したMTLアーキテクチャは,2つのタスク間の相互関係から,分類精度の向上と,軽量ニューラルネットワークモデルによる学習効率の向上に有効である。
また、電磁スペクトルにおけるレーダや通信信号等の異種無線信号の問題についても考察する。
そこで,提案したMTLモデルが,より軽量なアーキテクチャを維持しながら,同時に2つの信号特性評価タスクを実行しながら,最先端の単一タスク学習分類器を上回っていることを示す。
最後に、レーダーと複数のラベルとの通信信号で構成される唯一の既知のオープン異種無線信号データセットをリリースします。
関連論文リスト
- Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
IoTデバイスを用いたマルチタスク分散画像伝送のためのFederated Learning-based semantic communication (FLSC)フレームワーク。
各リンクは階層型視覚変換器(HVT)ベースの抽出器とタスク適応トランスレータで構成される。
チャネル状態情報に基づく多重出力多重出力伝送モジュール。
論文 参考訳(メタデータ) (2023-08-07T16:32:14Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
本稿では,マルチタスク学習(MTL)問題として,レーダ信号の分類と特徴化に取り組むためのアプローチを提案する。
本稿では,複数のレグレッションタスクと分類タスクを同時最適化するIQST(IQ Signal Transformer)を提案する。
合成レーダデータセット上で提案したMTLモデルの性能を示すとともに,レーダ信号の特徴付けのための一級ベンチマークも提供する。
論文 参考訳(メタデータ) (2023-06-19T12:01:28Z) - Task-Oriented Communications for NextG: End-to-End Deep Learning and AI
Security Aspects [78.84264189471936]
NextG通信システムは,タスク指向通信などのタスクを確実に実行するために,この設計パラダイムのシフトを探求し始めている。
無線信号分類はNextG Radio Access Network (RAN) のタスクであり、エッジデバイスはスペクトル認識のための無線信号を収集し、信号ラベルを識別する必要があるNextGベースステーション(gNodeB)と通信する。
エッジデバイスとgNodeB用のエンコーダデコーダ対として、送信機、受信機、および分類器機能を共同で訓練することで、タスク指向通信を考える。
論文 参考訳(メタデータ) (2022-12-19T17:54:36Z) - Enabling the Wireless Metaverse via Semantic Multiverse Communication [82.47169682083806]
無線ネットワーク上のメタバースは、第6世代(6G)無線システムの新たなユースケースである。
メタバースを人間/機械エージェント固有のセマンティック・マルチバース(SM)に分解する新しいセマンティック・コミュニケーション・フレームワークを提案する。
各エージェントに格納されたSMは、セマンティックエンコーダとジェネレータから構成され、生成人工知能(AI)の最近の進歩を活用する。
論文 参考訳(メタデータ) (2022-12-13T21:21:07Z) - Data-Driven Blind Synchronization and Interference Rejection for Digital
Communication Signals [98.95383921866096]
本研究では,データ駆動型深層学習手法の可能性について検討した。
本研究では,高分解能時間構造(非定常性)の取得が性能向上につながることを示す。
既製のNNと古典的検出と干渉除去の両方で改善可能なドメインインフォームドニューラルネットワーク(NN)の設計を提案する。
論文 参考訳(メタデータ) (2022-09-11T14:10:37Z) - Self-Supervised RF Signal Representation Learning for NextG Signal
Classification with Deep Learning [5.624291722263331]
自己教師付き学習は、無線周波数(RF)信号自体から有用な表現を学習することを可能にする。
自己教師型学習による信号表現の学習により,AMRのサンプル効率(精度向上に必要なラベル付きサンプル数)を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2022-07-07T02:07:03Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - ChaRRNets: Channel Robust Representation Networks for RF Fingerprinting [0.0]
RFフィンガープリントのための複雑値畳み込みニューラルネットワーク(CNN)を提案する。
我々は,深層学習(dl)技術を用いた無線iotデバイスの指紋認証の問題に注目する。
論文 参考訳(メタデータ) (2021-05-08T03:03:21Z) - Reinforcement Learning Assisted Beamforming for Inter-cell Interference
Mitigation in 5G Massive MIMO Networks [0.0]
ビームフォーミングは、MMIMO(Multiple-input-multiple-output)通信において重要な技術である。
細胞間干渉(ICI)は、周波数再利用技術による5G通信が直面する主な障害の1つである。
5GダウンリンクにおけるICI緩和のための強化学習(RL)支援フルダイナミックビームフォーミングを提案する。
論文 参考訳(メタデータ) (2021-01-27T07:18:07Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。