論文の概要: Reverse Derivative Ascent: A Categorical Approach to Learning Boolean
Circuits
- arxiv url: http://arxiv.org/abs/2101.10488v1
- Date: Tue, 26 Jan 2021 00:07:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 19:44:49.730834
- Title: Reverse Derivative Ascent: A Categorical Approach to Learning Boolean
Circuits
- Title(参考訳): Reverse Derivative Ascent: ブール回路の学習におけるカテゴリ的アプローチ
- Authors: Paul Wilson (University of Southampton), Fabio Zanasi (University
College London)
- Abstract要約: Reverse Derivative Ascentは、機械学習のためのグラデーションベースのメソッドのカテゴリアナログです。
我々のモチベーションは逆回路であり、逆微分圏の理論を用いてアルゴリズムをそのような回路に適用する方法を示す。
ベンチマーク機械学習データセットに関する実験結果を提供することで,その実証的価値を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Reverse Derivative Ascent: a categorical analogue of gradient
based methods for machine learning. Our algorithm is defined at the level of
so-called reverse differential categories. It can be used to learn the
parameters of models which are expressed as morphisms of such categories. Our
motivating example is boolean circuits: we show how our algorithm can be
applied to such circuits by using the theory of reverse differential
categories. Note our methodology allows us to learn the parameters of boolean
circuits directly, in contrast to existing binarised neural network approaches.
Moreover, we demonstrate its empirical value by giving experimental results on
benchmark machine learning datasets.
- Abstract(参考訳): Reverse Derivative Ascentは、機械学習のためのグラデーションベースのメソッドのカテゴリアナログです。
我々のアルゴリズムは、いわゆる逆微分圏のレベルで定義される。
それはそのようなカテゴリの同型として表現されるモデルのパラメータを学ぶために使用することができます。
我々のモチベーションの例はブール回路(boolean circuits)であり、逆微分圏の理論を用いてアルゴリズムをそのような回路に適用する方法を示す。
既存の二項化ニューラルネットワークのアプローチとは対照的に,本手法ではブール回路のパラメータを直接学習することができる。
さらに、ベンチマーク機械学習データセットに実験結果を与えることで、その経験的価値を示す。
関連論文リスト
- Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - Categories of Differentiable Polynomial Circuits for Machine Learning [0.76146285961466]
本稿では, RDC のクラスについて, ジェネレータによるプレゼンテーションと方程式について検討する。
好適な機械学習モデルとしてEmphpolynomial circuitを提案する。
論文 参考訳(メタデータ) (2022-03-12T13:03:30Z) - Fair Interpretable Representation Learning with Correction Vectors [60.0806628713968]
我々は「補正ベクトル」の学習を中心にした公正表現学習のための新しい枠組みを提案する。
このような方法で制約されたいくつかの公正表現学習モデルが、ランキングや分類性能の損失を示さないことを実験的に示す。
論文 参考訳(メタデータ) (2022-02-07T11:19:23Z) - Pattern Inversion as a Pattern Recognition Method for Machine Learning [0.0]
本稿では,パターン認識におけるインデクシングに基づく手法について論じる。
パターン認識アプリケーションでは、このようなインデックス化手法が、完全に反転したファイルの逆パターンに取って代わることが示されている。
本稿では、新しいパターン変換を利用するパターン反転形式とその教師なしインスタント学習への応用について論じる。
論文 参考訳(メタデータ) (2021-08-15T10:25:51Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
画像ラベリングのための線形化代入フローの最適パラメータを推定するための新しいアルゴリズムを提案する。
この式をKrylov部分空間と低ランク近似を用いて効率的に評価する方法を示す。
論文 参考訳(メタデータ) (2021-08-02T13:38:09Z) - Asymptotics of Network Embeddings Learned via Subsampling [5.391157046071793]
本研究では,ノード2vecのようなサブサンプリング手法を用いて,単一の統一フレームワークへの表現手法について検討する。
これは、埋め込みベクトルが何を表現し、これらのメソッドが下流のタスクでいかにうまく機能するかを理解するための理論的基盤を提供する。
特に、一般的に使用される損失関数は、Fisher整合性の欠如などの欠点を引き起こす可能性があることを観察する。
論文 参考訳(メタデータ) (2021-07-06T02:54:53Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Training Neural Networks Using the Property of Negative Feedback to
Inverse a Function [0.0]
本稿では,関数の逆解析を行う負のフィードバックシステムの特性をニューラルネットワークのトレーニングに利用する方法について述べる。
本手法をMNISTデータセットに適用し,ニューラルネットワークのトレーニングに有効であることを示す結果を得た。
論文 参考訳(メタデータ) (2021-03-25T20:13:53Z) - Categorical Foundations of Gradient-Based Learning [0.31498833540989407]
本稿では,レンズ,パラメータマップ,逆微分カテゴリの観点から,勾配に基づく機械学習アルゴリズムの分類的基礎を提案する。
このフレームワークは強力な説明と統一のフレームワークを提供し、その類似性と相違点に新しい光を当てている。
我々はまた,Pythonにおける勾配に基づく学習の新たな実装を開発し,フレームワークが導入した原則から情報を得た。
論文 参考訳(メタデータ) (2021-03-02T18:43:10Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
クラスごとの説明性を提供するアルゴリズムを開発した。
実験の広範なバッテリーでは、クラス固有の可視化のための手法の能力を実証する。
論文 参考訳(メタデータ) (2020-12-03T18:48:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。