Low Resource Recognition and Linking of Biomedical Concepts from a Large
Ontology
- URL: http://arxiv.org/abs/2101.10587v2
- Date: Wed, 27 Jan 2021 18:02:15 GMT
- Title: Low Resource Recognition and Linking of Biomedical Concepts from a Large
Ontology
- Authors: Sunil Mohan and Rico Angell and Nick Monath and Andrew McCallum
- Abstract summary: PubMed, the most well known database of biomedical papers, relies on human curators to add these annotations.
Our approach achieves new state-of-the-art results for the UMLS in both traditional recognition/linking and semantic indexing-based evaluation.
- Score: 30.324906836652367
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Tools to explore scientific literature are essential for scientists,
especially in biomedicine, where about a million new papers are published every
year. Many such tools provide users the ability to search for specific entities
(e.g. proteins, diseases) by tracking their mentions in papers. PubMed, the
most well known database of biomedical papers, relies on human curators to add
these annotations. This can take several weeks for new papers, and not all
papers get tagged. Machine learning models have been developed to facilitate
the semantic indexing of scientific papers. However their performance on the
more comprehensive ontologies of biomedical concepts does not reach the levels
of typical entity recognition problems studied in NLP. In large part this is
due to their low resources, where the ontologies are large, there is a lack of
descriptive text defining most entities, and labeled data can only cover a
small portion of the ontology. In this paper, we develop a new model that
overcomes these challenges by (1) generalizing to entities unseen at training
time, and (2) incorporating linking predictions into the mention segmentation
decisions. Our approach achieves new state-of-the-art results for the UMLS
ontology in both traditional recognition/linking (+8 F1 pts) as well as
semantic indexing-based evaluation (+10 F1 pts).
Related papers
- Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge [2.2814097119704058]
Large language models (LLMs) are transforming the way information is retrieved with vast amounts of knowledge being summarized and presented.
LLMs are prone to highlight the most frequently seen pieces of information from the training set and to neglect the rare ones.
We introduce a novel information-retrieval method that leverages a knowledge graph to downsample these clusters and mitigate the information overload problem.
arXiv Detail & Related papers (2024-02-19T18:31:11Z) - Multi-level biomedical NER through multi-granularity embeddings and
enhanced labeling [3.8599767910528917]
This paper proposes a hybrid approach that integrates the strengths of multiple models.
BERT provides contextualized word embeddings, a pre-trained multi-channel CNN for character-level information capture, and following by a BiLSTM + CRF for sequence labelling and modelling dependencies between the words in the text.
We evaluate our model on the benchmark i2b2/2010 dataset, achieving an F1-score of 90.11.
arXiv Detail & Related papers (2023-12-24T21:45:36Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Improving Biomedical Abstractive Summarisation with Knowledge
Aggregation from Citation Papers [24.481854035628434]
Existing language models struggle to generate technical summaries that are on par with those produced by biomedical experts.
We propose a novel attention-based citation aggregation model that integrates domain-specific knowledge from citation papers.
Our model outperforms state-of-the-art approaches and achieves substantial improvements in abstractive biomedical text summarisation.
arXiv Detail & Related papers (2023-10-24T09:56:46Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - Domain-Specific Pretraining for Vertical Search: Case Study on
Biomedical Literature [67.4680600632232]
Self-supervised learning has emerged as a promising direction to overcome the annotation bottleneck.
We propose a general approach for vertical search based on domain-specific pretraining.
Our system can scale to tens of millions of articles on PubMed and has been deployed as Microsoft Biomedical Search.
arXiv Detail & Related papers (2021-06-25T01:02:55Z) - Recognising Biomedical Names: Challenges and Solutions [9.51284672475743]
We propose a transition-based NER model which can recognise discontinuous mentions.
We also develop a cost-effective approach that nominates the suitable pre-training data.
Our contributions have obvious practical implications, especially when new biomedical applications are needed.
arXiv Detail & Related papers (2021-06-23T08:20:13Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
We introduce a new task of disentangled paper summarization, which seeks to generate separate summaries for the paper contributions and the context of the work.
We extend the S2ORC corpus of academic articles by adding disentangled "contribution" and "context" reference labels.
We propose a comprehensive automatic evaluation protocol which reports the relevance, novelty, and disentanglement of generated outputs.
arXiv Detail & Related papers (2020-11-06T02:23:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.