Ontology Embedding: A Survey of Methods, Applications and Resources
- URL: http://arxiv.org/abs/2406.10964v1
- Date: Sun, 16 Jun 2024 14:49:19 GMT
- Title: Ontology Embedding: A Survey of Methods, Applications and Resources
- Authors: Jiaoyan Chen, Olga Mashkova, Fernando Zhapa-Camacho, Robert Hoehndorf, Yuan He, Ian Horrocks,
- Abstract summary: Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
- Score: 54.3453925775069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ontologies are widely used for representing domain knowledge and meta data, playing an increasingly important role in Information Systems, the Semantic Web, Bioinformatics and many other domains. However, logical reasoning that ontologies can directly support are quite limited in learning, approximation and prediction. One straightforward solution is to integrate statistical analysis and machine learning. To this end, automatically learning vector representation for knowledge of an ontology i.e., ontology embedding has been widely investigated in recent years. Numerous papers have been published on ontology embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field. To bridge this gap, we write this survey paper, which first introduces different kinds of semantics of ontologies, and formally defines ontology embedding from the perspectives of both mathematics and machine learning, as well as its property of faithfulness. Based on this, it systematically categorises and analyses a relatively complete set of over 80 papers, according to the ontologies and semantics that they aim at, and their technical solutions including geometric modeling, sequence modeling and graph propagation. This survey also introduces the applications of ontology embedding in ontology engineering, machine learning augmentation and life sciences, presents a new library mOWL, and discusses the challenges and future directions.
Related papers
- From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.
Large foundation models, such as large language models, have revolutionized various natural language processing tasks.
This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - Combining Machine Learning and Ontology: A Systematic Literature Review [0.0]
We conducted a review of articles that investigate the integration of machine learning and systematic reasoning.
The objective was to identify techniques that incorporate inductive reasoning (performed by us) into artificial intelligence systems.
arXiv Detail & Related papers (2024-01-15T14:56:04Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - Ontology-based Feature Selection: A Survey [0.6767885381740952]
Survey aims to provide insight into key aspects of knowledge extraction from text, images, databases and expertise.
presented examples span diverse application domains, e.g., medicine, tourism, mechanical and civil engineering.
arXiv Detail & Related papers (2021-04-15T19:03:31Z) - Learning Description Logic Ontologies. Five Approaches. Where Do They
Stand? [14.650545418986058]
We highlight machine learning and data mining approaches that have been proposed for the creation of description logic (DL)
These are based on association rule mining, formal concept analysis, inductive logic programming, computational learning theory, and neural networks.
arXiv Detail & Related papers (2021-04-02T18:36:45Z) - On the Complexity of Learning Description Logic Ontologies [14.650545418986058]
Ontologies are a popular way of representing domain knowledge, in particular, knowledge in domains related to life sciences.
We provide a formal specification of the exact and the probably correct learning models from learning theory.
arXiv Detail & Related papers (2021-03-25T09:18:12Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z) - A Survey of Embedding Space Alignment Methods for Language and Knowledge
Graphs [77.34726150561087]
We survey the current research landscape on word, sentence and knowledge graph embedding algorithms.
We provide a classification of the relevant alignment techniques and discuss benchmark datasets used in this field of research.
arXiv Detail & Related papers (2020-10-26T16:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.