論文の概要: Hyper-optimization with Gaussian Process and Differential Evolution
Algorithm
- arxiv url: http://arxiv.org/abs/2101.10625v1
- Date: Tue, 26 Jan 2021 08:33:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-14 13:09:42.086901
- Title: Hyper-optimization with Gaussian Process and Differential Evolution
Algorithm
- Title(参考訳): ガウス過程と微分進化アルゴリズムによる超最適化
- Authors: Jakub Klus, Pavel Grunt, Martin Dobrovoln\'y
- Abstract要約: 本稿では,利用可能な科学図書館のガウス過程最適化コンポーネントの具体的修正について述べる。
提示された修正はBlackBox 2020チャレンジに提出され、従来の最適化ライブラリを上回った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimization of problems with high computational power demands is a
challenging task. A probabilistic approach to such optimization called Bayesian
optimization lowers performance demands by solving mathematically simpler model
of the problem. Selected approach, Gaussian Process, models problem using a
mixture of Gaussian functions. This paper presents specific modifications of
Gaussian Process optimization components from available scientific libraries.
Presented modifications were submitted to BlackBox 2020 challenge, where it
outperformed some conventionally available optimization libraries.
- Abstract(参考訳): 計算力の要求の高い問題の最適化は難しい課題である。
ベイズ最適化と呼ばれるそのような最適化に対する確率論的アプローチは、問題の数学的に単純なモデルを解くことによって性能要求を下げる。
選択されたアプローチ、ガウス過程、ガウス関数の混合を用いたモデル問題。
本稿では,利用可能な科学図書館のガウス過程最適化コンポーネントの具体的修正について述べる。
提示された修正はBlackBox 2020チャレンジに提出され、従来の最適化ライブラリを上回った。
関連論文リスト
- Quantum-Enhanced Simulation-Based Optimization for Newsvendor Problems [5.500172106704342]
古典モンテカルロシミュレーションと比較して量子振幅推定(QAE)の高効率性を利用する。
本研究では,シミュレーションに基づく最適化に量子エンハンスアルゴリズムを用い,NP-hardとして知られる古典ニュース問題の変種を解く。
論文 参考訳(メタデータ) (2024-03-26T05:14:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
従来の手法に関する進化的アルゴリズムの利点は、文献で大いに議論されている。
粒子群はそのような利点を共有しているが、計算コストの低減と実装の容易さが要求されるため、進化的アルゴリズムよりも優れている。
本論文は, それらのチューニングについて検討するものではなく, 従来の研究から汎用的な設定を抽出し, 様々な問題を最適化するために, 事実上同じアルゴリズムを用いている。
論文 参考訳(メタデータ) (2021-01-25T02:06:30Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
我々は、弱凸(おそらく非滑らかな)最適化問題の重要なクラスを解くための、適応的な段階的な新しい手法の族を解析する。
実験結果から,提案アルゴリズムが0次勾配降下と設計変動を経験的に上回ることを示す。
論文 参考訳(メタデータ) (2020-05-19T07:44:52Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Scalable Hyperparameter Optimization with Lazy Gaussian Processes [1.3999481573773074]
本稿では,ガウス過程の高精度な新しい近似法を提案する。
最初の実験では、単一ノードにおける162の係数の高速化と、並列環境における5の係数のさらなる高速化が示されている。
論文 参考訳(メタデータ) (2020-01-16T10:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。