AINet: Association Implantation for Superpixel Segmentation
- URL: http://arxiv.org/abs/2101.10696v1
- Date: Tue, 26 Jan 2021 10:40:13 GMT
- Title: AINet: Association Implantation for Superpixel Segmentation
- Authors: Yaxiong Wang, Yunchao Wei, Xueming Qian, Li Zhu, Yi Yang
- Abstract summary: We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
- Score: 82.21559299694555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, some approaches are proposed to harness deep convolutional networks
to facilitate superpixel segmentation. The common practice is to first evenly
divide the image into a pre-defined number of grids and then learn to associate
each pixel with its surrounding grids. However, simply applying a series of
convolution operations with limited receptive fields can only implicitly
perceive the relations between the pixel and its surrounding grids.
Consequently, existing methods often fail to provide an effective context when
inferring the association map. To remedy this issue, we propose a novel
\textbf{A}ssociation \textbf{I}mplantation (AI) module to enable the network to
explicitly capture the relations between the pixel and its surrounding grids.
The proposed AI module directly implants the features of grid cells to the
surrounding of its corresponding central pixel, and conducts convolution on the
padded window to adaptively transfer knowledge between them. With such an
implantation operation, the network could explicitly harvest the pixel-grid
level context, which is more in line with the target of superpixel segmentation
comparing to the pixel-wise relation. Furthermore, to pursue better boundary
precision, we design a boundary-perceiving loss to help the network
discriminate the pixels around boundaries in hidden feature level, which could
benefit the subsequent inferring modules to accurately identify more boundary
pixels. Extensive experiments on BSDS500 and NYUv2 datasets show that our
method could not only achieve state-of-the-art performance but maintain
satisfactory inference efficiency.
Related papers
- FuseNet: Self-Supervised Dual-Path Network for Medical Image
Segmentation [3.485615723221064]
FuseNet is a dual-stream framework for self-supervised semantic segmentation.
Cross-modal fusion technique extends the principles of CLIP by replacing textual data with augmented images.
experiments on skin lesion and lung segmentation datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-11-22T00:03:16Z) - ReFit: A Framework for Refinement of Weakly Supervised Semantic
Segmentation using Object Border Fitting for Medical Images [4.945138408504987]
Weakly Supervised Semantic (WSSS) relying only on image-level supervision is a promising approach to deal with the need for networks.
We propose our novel ReFit framework, which deploys state-of-the-art class activation maps combined with various post-processing techniques.
By applying our method to WSSS predictions, we achieved up to 10% improvement over the current state-of-the-art WSSS methods for medical imaging.
arXiv Detail & Related papers (2023-03-14T12:46:52Z) - Pixel Relationships-based Regularizer for Retinal Vessel Image
Segmentation [4.3251090426112695]
This study presents regularizers to give the pixel neighbor relationship information to the learning process.
Experiments show that our scheme successfully captures pixel neighbor relations and improves the performance of the convolutional neural network.
arXiv Detail & Related papers (2022-12-28T07:35:20Z) - From Explanations to Segmentation: Using Explainable AI for Image
Segmentation [1.8581514902689347]
We build upon the advances of the Explainable AI (XAI) community and extract a pixel-wise binary segmentation.
We show that we achieve similar results compared to an established U-Net segmentation architecture.
The proposed method can be trained in a weakly supervised fashion, as the training samples must be only labeled on image-level.
arXiv Detail & Related papers (2022-02-01T10:26:10Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes.
Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary.
Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting.
arXiv Detail & Related papers (2021-05-25T04:58:51Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
We consider each representative region with independent semantic information as a subspace, and formulate superpixel segmentation as a subspace clustering problem.
We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels.
We propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel.
arXiv Detail & Related papers (2020-12-11T06:18:36Z) - An Empirical Method to Quantify the Peripheral Performance Degradation
in Deep Networks [18.808132632482103]
convolutional neural network (CNN) kernels compound with each convolutional layer.
Deeper and deeper networks combined with stride-based down-sampling means that the propagation of this region can end up covering a non-negligable portion of the image.
Our dataset is constructed by inserting objects into high resolution backgrounds, thereby allowing us to crop sub-images which place target objects at specific locations relative to the image border.
By probing the behaviour of Mask R-CNN across a selection of target locations, we see clear patterns of performance degredation near the image boundary, and in particular in the image corners.
arXiv Detail & Related papers (2020-12-04T18:00:47Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
We propose to build the pixel-level cycle association between source and target pixel pairs.
Our method can be trained end-to-end in one stage and introduces no additional parameters.
arXiv Detail & Related papers (2020-10-31T00:11:36Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
Weakly-supervised semantic segmentation is a challenging task as no pixel-wise label information is provided for training.
We propose an iterative algorithm to learn such pairwise relations.
We show that the proposed algorithm performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2020-02-19T10:32:03Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.