Few-Shot Semantic Parsing for New Predicates
- URL: http://arxiv.org/abs/2101.10708v1
- Date: Tue, 26 Jan 2021 11:08:08 GMT
- Title: Few-Shot Semantic Parsing for New Predicates
- Authors: Zhuang Li, Lizhen Qu, Shuo Huang, Gholamreza Haffari
- Abstract summary: State-of-the-art neural semantics achieve less than 25% accuracy on benchmark datasets when k= 1.
Our method consistently outperforms all the baselines in both one and two-shot settings.
- Score: 33.84280840107834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate the problems of semantic parsing in a few-shot
learning setting. In this setting, we are provided with utterance-logical form
pairs per new predicate. The state-of-the-art neural semantic parsers achieve
less than 25% accuracy on benchmark datasets when k= 1. To tackle this problem,
we proposed to i) apply a designated meta-learning method to train the model;
ii) regularize attention scores with alignment statistics; iii) apply a
smoothing technique in pre-training. As a result, our method consistently
outperforms all the baselines in both one and two-shot settings.
Related papers
- Q-REG: End-to-End Trainable Point Cloud Registration with Surface
Curvature [81.25511385257344]
We present a novel solution, Q-REG, which utilizes rich geometric information to estimate the rigid pose from a single correspondence.
Q-REG allows to formalize the robust estimation as an exhaustive search, hence enabling end-to-end training.
We demonstrate in the experiments that Q-REG is agnostic to the correspondence matching method and provides consistent improvement both when used only in inference and in end-to-end training.
arXiv Detail & Related papers (2023-09-27T20:58:53Z) - Hierarchical Phrase-based Sequence-to-Sequence Learning [94.10257313923478]
We describe a neural transducer that maintains the flexibility of standard sequence-to-sequence (seq2seq) models while incorporating hierarchical phrases as a source of inductive bias during training and as explicit constraints during inference.
Our approach trains two models: a discriminative derivation based on a bracketing grammar whose tree hierarchically aligns source and target phrases, and a neural seq2seq model that learns to translate the aligned phrases one-by-one.
arXiv Detail & Related papers (2022-11-15T05:22:40Z) - Adaptive Meta-learner via Gradient Similarity for Few-shot Text
Classification [11.035878821365149]
We propose a novel Adaptive Meta-learner via Gradient Similarity (AMGS) to improve the model generalization ability to a new task.
Experimental results on several benchmarks demonstrate that the proposed AMGS consistently improves few-shot text classification performance.
arXiv Detail & Related papers (2022-09-10T16:14:53Z) - Training Naturalized Semantic Parsers with Very Little Data [10.709587018625275]
State-of-the-art (SOTA) semantics are seq2seq architectures based on large language models that have been pretrained on vast amounts of text.
Recent work has explored a reformulation of semantic parsing whereby the output sequences are themselves natural language sentences.
We show that this method delivers new SOTA few-shot performance on the Overnight dataset.
arXiv Detail & Related papers (2022-04-29T17:14:54Z) - Task Affinity with Maximum Bipartite Matching in Few-Shot Learning [28.5184196829547]
We propose an asymmetric affinity score for representing the complexity of utilizing the knowledge of one task for learning another one.
In particular, using this score, we find relevant training data labels to the test data and leverage the discovered relevant data for episodically fine-tuning a few-shot model.
arXiv Detail & Related papers (2021-10-05T23:15:55Z) - Total Recall: a Customized Continual Learning Method for Neural Semantic
Parsers [38.035925090154024]
A neural semantic learns tasks sequentially without accessing full training data from previous tasks.
We propose TotalRecall, a continual learning method designed for neural semantics from two aspects.
We demonstrate that a neural semantic trained with TotalRecall achieves superior performance than the one trained directly with the SOTA continual learning algorithms and achieve a 3-6 times speedup compared to re-training from scratch.
arXiv Detail & Related papers (2021-09-11T04:33:28Z) - Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning [57.4036085386653]
We show that prompt-based models for sentence pair classification tasks still suffer from a common pitfall of adopting inferences based on lexical overlap.
We then show that adding a regularization that preserves pretraining weights is effective in mitigating this destructive tendency of few-shot finetuning.
arXiv Detail & Related papers (2021-09-09T10:10:29Z) - Improving Deep Learning Sound Events Classifiers using Gram Matrix
Feature-wise Correlations [1.2891210250935146]
In our method, we analyse all the activations of a generic CNN in order to produce feature representations using Gram Matrices.
The proposed approach can be applied to any CNN and our experimental evaluation of four different architectures on two datasets demonstrated that our method consistently improves the baseline models.
arXiv Detail & Related papers (2021-02-23T16:08:02Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks.
We introduce a new scoring method that casts a plausibility ranking task in a full-text format.
We show that our method provides a much more stable training phase across random restarts.
arXiv Detail & Related papers (2020-04-29T10:54:40Z) - Fast Template Matching and Update for Video Object Tracking and
Segmentation [56.465510428878]
The main task we aim to tackle is the multi-instance semi-supervised video object segmentation across a sequence of frames.
The challenges lie in the selection of the matching method to predict the result as well as to decide whether to update the target template.
We propose a novel approach which utilizes reinforcement learning to make these two decisions at the same time.
arXiv Detail & Related papers (2020-04-16T08:58:45Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.