Scalable Fine-tuning from Multiple Data Sources: A First-Order Approximation Approach
- URL: http://arxiv.org/abs/2409.19458v2
- Date: Mon, 25 Nov 2024 06:09:45 GMT
- Title: Scalable Fine-tuning from Multiple Data Sources: A First-Order Approximation Approach
- Authors: Dongyue Li, Ziniu Zhang, Lu Wang, Hongyang R. Zhang,
- Abstract summary: We study the problem of fine-tuning a language model (LM) for a target task by optimally using the information from $n$ auxiliary tasks.
This problem has broad applications in NLP, such as targeted instruction tuning and data selection in chain-of-thought fine-tuning.
We introduce a new algorithm to estimate model fine-tuning performances without repeated training.
- Score: 17.79010397902909
- License:
- Abstract: We study the problem of fine-tuning a language model (LM) for a target task by optimally using the information from $n$ auxiliary tasks. This problem has broad applications in NLP, such as targeted instruction tuning and data selection in chain-of-thought fine-tuning. The key challenge of this problem is that not all auxiliary tasks are useful to improve the performance of the target task. Thus, choosing the right subset of auxiliary tasks is crucial. Conventional subset selection methods, such as forward and backward stepwise selection, are unsuitable for LM fine-tuning because they require repeated training on subsets of auxiliary tasks. This paper introduces a new algorithm to estimate model fine-tuning performances without repeated training. Our algorithm first performs multitask training using the data of all the tasks to obtain a meta initialization. Then, we approximate the model fine-tuning loss of a subset using functional values and gradients from the meta initialization. Empirically, we find that this gradient-based approximation holds with remarkable accuracy for twelve transformer-based LMs. Thus, we can now estimate fine-tuning performances on CPUs within a few seconds. Finally, we fine-tune the pretrained base model for once on the selected subset of tasks. We conduct extensive experiments to validate this approach, delivering a speedup of $30\times$ over conventional subset selection while incurring only $1\%$ error of the true fine-tuning performances. In downstream evaluations involving both instruction tuning and chain-of-thought fine-tuning, this loss-based selection approach improves over prior gradient or representation similarity-based methods for subset selection by up to $3.8\%$.
Related papers
- TSDS: Data Selection for Task-Specific Model Finetuning [39.19448080265558]
The efficacy of task-specific finetuning largely depends on the selection of appropriate training data.
We present TSDS (Task-Specific Data Selection), a framework to select data for task-specific model finetuning.
We show that instruction tuning using data selected by our method with a 1% selection ratio often outperforms using the full dataset.
arXiv Detail & Related papers (2024-10-15T05:54:17Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
We propose auxiliary tasks that exploit the alignment between the original and corrected sentences.
We formulate each task as a sequence-to-sequence problem and perform multi-task training.
We find that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance.
arXiv Detail & Related papers (2023-11-20T14:50:12Z) - DynamoRep: Trajectory-Based Population Dynamics for Classification of
Black-box Optimization Problems [0.755972004983746]
We propose a feature extraction method that describes the trajectories of optimization algorithms using simple statistics.
We demonstrate that the proposed DynamoRep features capture enough information to identify the problem class on which the optimization algorithm is running.
arXiv Detail & Related papers (2023-06-08T06:57:07Z) - Active Finetuning: Exploiting Annotation Budget in the
Pretraining-Finetuning Paradigm [132.9949120482274]
This paper focuses on the selection of samples for annotation in the pretraining-finetuning paradigm.
We propose a novel method called ActiveFT for active finetuning task to select a subset of data distributing similarly with the entire unlabeled pool.
Extensive experiments show the leading performance and high efficiency of ActiveFT superior to baselines on both image classification and semantic segmentation.
arXiv Detail & Related papers (2023-03-25T07:17:03Z) - Unsupervised Learning of Initialization in Deep Neural Networks via
Maximum Mean Discrepancy [74.34895342081407]
We propose an unsupervised algorithm to find good initialization for input data.
We first notice that each parameter configuration in the parameter space corresponds to one particular downstream task of d-way classification.
We then conjecture that the success of learning is directly related to how diverse downstream tasks are in the vicinity of the initial parameters.
arXiv Detail & Related papers (2023-02-08T23:23:28Z) - Probabilistic Bilevel Coreset Selection [24.874967723659022]
We propose a continuous probabilistic bilevel formulation of coreset selection by learning a probablistic weight for each training sample.
We develop an efficient solver to the bilevel optimization problem via unbiased policy gradient without trouble of implicit differentiation.
arXiv Detail & Related papers (2023-01-24T09:37:00Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
We consider the problem of searching an input maximizing a black-box objective function given a static dataset of input-output queries.
A popular approach to solving this problem is maintaining a proxy model that approximates the true objective function.
Here, the main challenge is how to avoid adversarially optimized inputs during the search.
arXiv Detail & Related papers (2021-10-27T05:37:12Z) - Hyperparameter Transfer Learning with Adaptive Complexity [5.695163312473305]
We propose a new multi-task BO method that learns a set of ordered, non-linear basis functions of increasing complexity via nested drop-out and automatic relevance determination.
arXiv Detail & Related papers (2021-02-25T12:26:52Z) - Adaptive Submodular Meta-Learning [28.24164217929491]
We introduce and study an adaptive submodular meta-learning problem.
The input of our problem is a set of items, where each item has a random state which is initially unknown.
Our objective is to adaptively select a group of items that achieve the best performance over a set of tasks.
arXiv Detail & Related papers (2020-12-11T01:28:55Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks.
We introduce a new scoring method that casts a plausibility ranking task in a full-text format.
We show that our method provides a much more stable training phase across random restarts.
arXiv Detail & Related papers (2020-04-29T10:54:40Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.