Dynamic prediction of time to event with survival curves
- URL: http://arxiv.org/abs/2101.10739v2
- Date: Thu, 11 Mar 2021 04:32:31 GMT
- Title: Dynamic prediction of time to event with survival curves
- Authors: Jie Zhu, Blanca Gallego
- Abstract summary: We apply our recently developed counterfactual dynamic survival model (CDSM) to static and longitudinal observational data.
We prove that the inflection point of its estimated individual survival curves provides reliable prediction of the patient failure time.
- Score: 3.9169188005935927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the ever-growing complexity of primary health care system, proactive
patient failure management is an effective way to enhancing the availability of
health care resource. One key enabler is the dynamic prediction of
time-to-event outcomes. Conventional explanatory statistical approach lacks the
capability of making precise individual level prediction, while the data
adaptive binary predictors does not provide nominal survival curves for
biologically plausible survival analysis. The purpose of this article is to
elucidate that the knowledge of explanatory survival analysis can significantly
enhance the current black-box data adaptive prediction models. We apply our
recently developed counterfactual dynamic survival model (CDSM) to static and
longitudinal observational data and testify that the inflection point of its
estimated individual survival curves provides reliable prediction of the
patient failure time.
Related papers
- SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
We propose SurvCORN, a novel method utilizing conditional ordinal ranking networks to predict survival curves directly.
We also introduce SurvMAE, a metric designed to evaluate the accuracy of model predictions in estimating time-to-event outcomes.
arXiv Detail & Related papers (2024-09-30T03:01:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - HypUC: Hyperfine Uncertainty Calibration with Gradient-boosted
Corrections for Reliable Regression on Imbalanced Electrocardiograms [3.482894964998886]
We propose HypUC, a framework for imbalanced probabilistic regression in medical time series.
HypUC is evaluated on a large, diverse, real-world dataset of ECGs collected from millions of patients.
arXiv Detail & Related papers (2023-11-23T06:17:31Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Deep Learning-Based Discrete Calibrated Survival Prediction [0.0]
We present Discrete Calibrated Survival (DCS), a novel deep neural network for discriminated and calibrated survival prediction.
The enhanced performance of DCS can be attributed to two novel features, the variable temporal output node spacing and the novel loss term.
We believe DCS is an important step towards clinical application of deep-learning-based survival prediction with state-of-the-art discrimination and good calibration.
arXiv Detail & Related papers (2022-08-17T09:40:07Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - WRSE -- a non-parametric weighted-resolution ensemble for predicting
individual survival distributions in the ICU [0.251657752676152]
Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system.
We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.
arXiv Detail & Related papers (2020-11-02T10:13:59Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Uncertainty Estimation in Cancer Survival Prediction [8.827764645115955]
Survival models are used in various fields, such as the development of cancer treatment protocols.
We propose a Bayesian framework for survival models that not only gives more accurate survival predictions but also quantifies the survival uncertainty better.
Our approach is a novel combination of variational inference for uncertainty estimation, neural multi-task logistic regression for estimating nonlinear and time-varying risk models, and an additional sparsity-inducing prior to work with high dimensional data.
arXiv Detail & Related papers (2020-03-19T05:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.