Uncertainty Estimation in Cancer Survival Prediction
- URL: http://arxiv.org/abs/2003.08573v2
- Date: Wed, 25 Mar 2020 16:40:03 GMT
- Title: Uncertainty Estimation in Cancer Survival Prediction
- Authors: Hrushikesh Loya, Pranav Poduval, Deepak Anand, Neeraj Kumar, and Amit
Sethi
- Abstract summary: Survival models are used in various fields, such as the development of cancer treatment protocols.
We propose a Bayesian framework for survival models that not only gives more accurate survival predictions but also quantifies the survival uncertainty better.
Our approach is a novel combination of variational inference for uncertainty estimation, neural multi-task logistic regression for estimating nonlinear and time-varying risk models, and an additional sparsity-inducing prior to work with high dimensional data.
- Score: 8.827764645115955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Survival models are used in various fields, such as the development of cancer
treatment protocols. Although many statistical and machine learning models have
been proposed to achieve accurate survival predictions, little attention has
been paid to obtain well-calibrated uncertainty estimates associated with each
prediction. The currently popular models are opaque and untrustworthy in that
they often express high confidence even on those test cases that are not
similar to the training samples, and even when their predictions are wrong. We
propose a Bayesian framework for survival models that not only gives more
accurate survival predictions but also quantifies the survival uncertainty
better. Our approach is a novel combination of variational inference for
uncertainty estimation, neural multi-task logistic regression for estimating
nonlinear and time-varying risk models, and an additional sparsity-inducing
prior to work with high dimensional data.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests [0.0]
Conformal Prediction has emerged as a promising method to pair machine learning models with prediction intervals.
We propose a method to estimate the uncertainty of each sample by calculating the variance obtained from a Deep Regression Forest.
arXiv Detail & Related papers (2024-02-21T19:09:53Z) - Stability of clinical prediction models developed using statistical or
machine learning methods [0.5482532589225552]
Clinical prediction models estimate an individual's risk of a particular health outcome, conditional on their values of multiple predictors.
Many models are developed using small datasets that lead to instability in the model and its predictions (estimated risks)
We show instability in a model's estimated risks is often considerable, and manifests itself as miscalibration of predictions in new data.
arXiv Detail & Related papers (2022-11-02T11:55:28Z) - Predictive Multiplicity in Probabilistic Classification [25.111463701666864]
We present a framework for measuring predictive multiplicity in probabilistic classification.
We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks.
Our results emphasize the need to report predictive multiplicity more widely.
arXiv Detail & Related papers (2022-06-02T16:25:29Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
We propose to explicitly train the uncertainty predictor where we are not given data to make it reliable.
As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space.
With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks.
arXiv Detail & Related papers (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Loss Estimators Improve Model Generalization [36.520569284970456]
We propose to train a loss estimator alongside the predictive model, using a contrastive training objective, to directly estimate the prediction uncertainties.
We show the impact of loss estimators on model generalization, in terms of both its fidelity on in-distribution data and its ability to detect out of distribution samples or new classes unseen during training.
arXiv Detail & Related papers (2021-03-05T16:35:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.