論文の概要: LIGHTS: LIGHT Specularity Dataset for specular detection in Multi-view
- arxiv url: http://arxiv.org/abs/2101.10772v1
- Date: Tue, 26 Jan 2021 13:26:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 19:53:38.795866
- Title: LIGHTS: LIGHT Specularity Dataset for specular detection in Multi-view
- Title(参考訳): LIGHTS:マルチビューにおけるスペクトル検出のためのLIGHT Specularity Dataset
- Authors: Mohamed Dahy Elkhouly, Theodore Tsesmelis, Alessio Del Bue, Stuart
James
- Abstract要約: 本研究では,新たな物理ベースレンダリングされたLIGHT Specularity(SLIGHT)データセットを提案する。
私たちのデータセットは、各シーンが複数のビューでレンダリングされる18の高品質の建築シーンで構成されています。
合計で2,603のビューがあり、1シーンあたり平均145のビューがあります。
- 参考スコア(独自算出の注目度): 12.612981566441908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Specular highlights are commonplace in images, however, methods for detecting
them and in turn removing the phenomenon are particularly challenging. A reason
for this, is due to the difficulty of creating a dataset for training or
evaluation, as in the real-world we lack the necessary control over the
environment. Therefore, we propose a novel physically-based rendered LIGHT
Specularity (LIGHTS) Dataset for the evaluation of the specular highlight
detection task. Our dataset consists of 18 high quality architectural scenes,
where each scene is rendered with multiple views. In total we have 2,603 views
with an average of 145 views per scene. Additionally we propose a simple
aggregation based method for specular highlight detection that outperforms
prior work by 3.6% in two orders of magnitude less time on our dataset.
- Abstract(参考訳): スペクティラーハイライトは画像では一般的だが、それらを検知し、その現象を取り除く方法は特に困難である。
この理由は、トレーニングや評価のためのデータセットを作成することが困難であるためです。現実の世界では、環境に対する必要な制御が欠けています。
そこで本研究では,光強調検出タスクの評価のために,物理ベースでレンダリングされたLIGHTS(Light Specularity)データセットを提案する。
私たちのデータセットは、各シーンが複数のビューでレンダリングされる18の高品質の建築シーンで構成されています。
合計で2,603のビューがあり、1シーンあたり平均145のビューがあります。
さらに,データセット上の2桁の時間で3.6%の精度で先行作業に勝る,スペックハイライト検出のための簡易アグリゲーション方式を提案する。
関連論文リスト
- HUE Dataset: High-Resolution Event and Frame Sequences for Low-Light Vision [16.432164340779266]
低照度条件下での高分解能イベントとフレームシーケンスのコレクションであるHUEデータセットを紹介する。
私たちのデータセットには、屋内、都市景観、トワイライト、夜、運転、制御されたシナリオを含む106のシーケンスが含まれています。
我々は定性評価と定量的評価の両方を用いて、最先端の低照度化と事象に基づく画像再構成手法を評価する。
論文 参考訳(メタデータ) (2024-10-24T21:15:15Z) - BVI-RLV: A Fully Registered Dataset and Benchmarks for Low-Light Video Enhancement [56.97766265018334]
本稿では,2つの異なる低照度条件下での様々な動きシナリオを持つ40のシーンからなる低照度映像データセットを提案する。
我々は、プログラム可能なモータードリーを用いて、通常の光で捉えた完全に登録された地上真実データを提供し、異なる光レベルにわたるピクセルワイドフレームアライメントのための画像ベースアプローチによりそれを洗練する。
実験の結果,Low-light Video enhancement (LLVE) における完全登録ビデオペアの重要性が示された。
論文 参考訳(メタデータ) (2024-07-03T22:41:49Z) - MonoTDP: Twin Depth Perception for Monocular 3D Object Detection in
Adverse Scenes [49.21187418886508]
本論文は,モノTDP(MonoTDP)と呼ばれる悪シーンにおける2つの深度を知覚するモノクル3次元検出モデルを提案する。
まず、制御不能な気象条件を扱うモデルを支援するための適応学習戦略を導入し、様々な劣化要因による劣化を著しく抑制する。
そこで本研究では, シーン深度と物体深度を同時に推定する新たな2つの深度認識モジュールを提案する。
論文 参考訳(メタデータ) (2023-05-18T13:42:02Z) - Booster: a Benchmark for Depth from Images of Specular and Transparent
Surfaces [49.44971010149331]
本研究では,高分解能で高精度かつ高密度な地下構造ラベルを含む新しいデータセットを提案する。
我々の買収パイプラインは、新しい時空ステレオフレームワークを活用している。
データセットは85の異なるシーンで収集された606のサンプルで構成されている。
論文 参考訳(メタデータ) (2023-01-19T18:59:28Z) - DarkVision: A Benchmark for Low-light Image/Video Perception [44.94878263751042]
画像強調とオブジェクト検出の両方に、DarkVisionという、最初のマルチ照度、マルチカメラ、低照度データセットをコントリビュートする。
データセットは明るい暗黒のペアで構成され、900の静的なシーンと15のカテゴリのオブジェクト、32のダイナミックなシーンと4つのカテゴリのオブジェクトで構成されている。
それぞれのシーンで、画像/ビデオは3つのグレードのカメラを使用して5つの照度レベルで撮影され、平均光子を確実に推定することができる。
論文 参考訳(メタデータ) (2023-01-16T05:55:59Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
本稿では,ハズフリー画像とその場でのハズ密度測定を併用した,最初の実画像ベンチマークデータセットを提案する。
このデータセットはコントロールされた環境で生成され、プロの煙発生装置がシーン全体を覆っている。
このデータセットのサブセットは、CVPR UG2 2022 チャレンジの Haze Track における Object Detection に使用されている。
論文 参考訳(メタデータ) (2022-06-13T19:14:06Z) - StandardSim: A Synthetic Dataset For Retail Environments [0.07874708385247352]
本稿では,意味的セグメンテーション,インスタンスセグメンテーション,深さ推定,オブジェクト検出のためのアノテーションを特徴とする大規模合成データセットを提案する。
私たちのデータセットはシーン毎に複数のビューを提供し、マルチビュー表現学習を可能にします。
我々は、データセットのセグメンテーションと深さ推定に広く使用されているモデルをベンチマークし、我々のテストセットが現在の小規模データセットと比較して難しいベンチマークを構成することを示す。
論文 参考訳(メタデータ) (2022-02-04T22:28:35Z) - NOD: Taking a Closer Look at Detection under Extreme Low-Light
Conditions with Night Object Detection Dataset [25.29013780731876]
低い光は、以前考えられていたよりもマシン認知にとって困難である。
夜間に街路で撮影されたダイナミックなシーンを示す大規模なデータセットを提示する。
本稿では,画像強調モジュールをオブジェクト検出フレームワークと2つの新しいデータ拡張手法に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-10-20T03:44:04Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - GraspNet: A Large-Scale Clustered and Densely Annotated Dataset for
Object Grasping [49.777649953381676]
我々は,統合評価システムを用いた大規模グリップポーズ検出データセットに貢献する。
データセットには87,040枚のRGBD画像と3億7000万枚以上のグリップポーズが含まれている。
論文 参考訳(メタデータ) (2019-12-31T18:15:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。